Cho hàm số g(t) = sin22t. Tính g''(π/8), g''(π/12)
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo sai\(\begin{array}{l}g\left( t \right) = {\sin ^2}2t = \dfrac{{1 - \cos 4t}}{2}\\ = \dfrac{1}{2} - \dfrac{1}{2}\cos 4t\\g'\left( t \right) = - \dfrac{1}{2}\left( { - 4\sin 4t} \right) = 2\sin 4t\\g''\left( t \right) = 2.4\cos 4t = 8\cos 4t\\g''\left( {\dfrac{\pi }{8}} \right) = 8\cos \dfrac{\pi }{2} = 0\\g''\left( {\dfrac{\pi }{{12}}} \right) = 8\cos \dfrac{\pi }{3} = 8.\dfrac{1}{2} = 4\end{array}\)
ADMICRO
YOMEDIA
ZUNIA9