Cho hình chóp O.ABC có đường cao \(OH = \frac{{2a}}{{\sqrt 3 }}\). Gọi M và N lần lượt là trung điểm của OA và OB. Khoảng cách giữa đường thẳng MN và (ABC) bằng
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiDo \(MN{\rm{//}}\left( {ABC} \right) \Rightarrow d\left( {MN,\left( {ABC} \right)} \right) = d\left( {M,\left( {ABC} \right)} \right)\)
Lại có
\(\begin{array}{l} \frac{{OA}}{{MA}} = \frac{{d\left( {O,\left( {ABC} \right)} \right)}}{{d\left( {M,\left( {ABC} \right)} \right)}} = 2 \Rightarrow d\left( {M,\left( {ABC} \right)} \right)\\ = \frac{1}{2}d\left( {O,\left( {ABC} \right)} \right) = \frac{{OH}}{2} = \frac{{a\sqrt 3 }}{3} \end{array}\)
ADMICRO
YOMEDIA
ZUNIA9