Giải bất phương trình: \(\displaystyle \ln (3{e^x} - 2) \le 2x\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐK: \(\displaystyle 3{e^x} - 2 > 0 \Leftrightarrow {e^x} > \frac{2}{3}\) \(\displaystyle \Leftrightarrow x > \ln \frac{2}{3}\).
Khi đó bpt\(\displaystyle \Leftrightarrow 3{e^x} - 2 \le {e^{2x}}\).
Đặt \(t=e^x > 0\) ta được \(\displaystyle 3t - 2 \le {t^2} \Leftrightarrow {t^2} - 3t + 2 \ge 0\) \(\displaystyle \Leftrightarrow \left[ \begin{array}{l}t \ge 2\\t \le 1\end{array} \right.\).
\(\displaystyle \Rightarrow \left[ \begin{array}{l}{e^x} \ge 2\\{e^x} \le 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x \ge \ln 2\\x \le 0\end{array} \right.\).
Kết hợp điều kiện ta được \(\displaystyle \left[ \begin{array}{l}x \ge \ln 2\\\ln \frac{2}{3} < x \le 0\end{array} \right.\)
Vậy tập nghiệm là \(\displaystyle \left( {\ln \frac{2}{3};0} \right] \cup \left[ {\ln 2; + \infty } \right)\).