Hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEaiabg2 % da9iaadIhadaGcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGH % RaWkcaaIXaaaleqaaaaa!3C9C! y = x\sqrt {{x^2} + 1} \) có đạo hàm cấp bằng :
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaafa % Gaeyypa0ZaaOaaaeaacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4k % aSIaaGymaaWcbeaakiabgUcaRiaadIhadaWcaaqaaiaadIhaaeaada % GcaaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIXaaa % leqaaaaakiabg2da9maalaaabaGaaGOmaiaadIhadaahaaWcbeqaai % aaikdaaaGccqGHRaWkcaaIXaaabaWaaOaaaeaacaWG4bWaaWbaaSqa % beaacaaIYaaaaOGaey4kaSIaaGymaaWcbeaaaaaaaa!4B5A! y' = \sqrt {{x^2} + 1} + x\frac{x}{{\sqrt {{x^2} + 1} }} = \frac{{2{x^2} + 1}}{{\sqrt {{x^2} + 1} }}\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGabmyEayaaga % Gaeyypa0ZaaSaaaeaacaaI0aGaamiEamaakaaabaGaamiEamaaCaaa % leqabaGaaGOmaaaakiabgUcaRiaaigdaaSqabaGccqGHsisldaqada % qaaiaaikdacaWG4bWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGym % aaGaayjkaiaawMcaamaalaaabaGaamiEaaqaamaakaaabaGaamiEam % aaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaaSqabaaaaaGcbaGa % amiEamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaaigdaaaGaeyypa0 % ZaaSaaaeaacaaIYaGaamiEamaaCaaaleqabaGaaG4maaaakiabgUca % RiaaiodacaWG4baabaWaaeWaaeaacaaIXaGaey4kaSIaamiEamaaCa % aaleqabaGaaGOmaaaaaOGaayjkaiaawMcaamaakaaabaGaaGymaiab % gUcaRiaadIhadaahaaWcbeqaaiaaikdaaaaabeaaaaaaaa!5B94! y'' = \frac{{4x\sqrt {{x^2} + 1} - \left( {2{x^2} + 1} \right)\frac{x}{{\sqrt {{x^2} + 1} }}}}{{{x^2} + 1}} = \frac{{2{x^3} + 3x}}{{\left( {1 + {x^2}} \right)\sqrt {1 + {x^2}} }}\)