Tích phân \(\int_{0}^{3} x(x-1) d x\) có giá trị bằng với giá trị của tích phân nào trong các tích phân dưới đây?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có
\(\int\limits_{0}^{3} x(x-1) d x=\left.\left(\frac{x^3}{3}-\frac{x^2}{2}\right)\right|_{0} ^{3}=\frac{9}{2}\)
\(\begin{array}{l} \int\limits_{0}^{\ln \sqrt{10}} e^{2 x} d x=\left.\frac{e^{2 x}}{2}\right|_{0} ^{\ln \sqrt{10}}=\frac{e^{2 \ln \sqrt{10}}-1}{2}=\frac{9}{2} \\ 3 \int\limits_{0}^{3 \pi} \sin x d x=-\left.3 \cos x\right|_{0} ^{3 \pi}=6 \\ \int\limits_{0}^{2}\left(x^{2}+x-3\right) d x=\left.\left(\frac{x^{3}}{3}+\frac{x^{2}}{2}-3 x\right)\right|_{0} ^{2}=\frac{8}{3}+2-6=-\frac{4}{3} \\ \int\limits_{0}^{\pi} \cos (3 x+\pi) d x=\left.\frac{1}{3} \sin (3 x+\pi)\right|_{0} ^{\pi}=\frac{1}{3}(\sin 4 \pi-\sin \pi)=0 \end{array}\)
Vậy chọn C