F(x) là nguyên hàm của f(x) trên R thỏa \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaKaaGg % aakmaalaaajaaObaGaaGymaaqaaiaadIhaaaGaamOraOWaaeWaaeaa % caWG4baacaGLOaGaayzkaaqcaaQaaeizaiaadIhaaKazbaiabaGaaG % ymaaqcbaEaaiaabwgaaKWaGkabgUIiYdGccqGH9aqpcaaIXaaaaa!4742! \int\limits_1^{\rm{e}} {\frac{1}{x}F\left( x \right){\rm{d}}x} = 1\) và F(e) = 3. Khi đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaKaaGg % aaciGGSbGaaiOBaiaadIhacaWGMbGcdaqadaqaaiaadIhaaiaawIca % caGLPaaajaaOcaqGKbGaamiEaaqcbaEaaiaaigdaaeaacaqGLbaajm % aOcqGHRiI8aaaa!450F! \int\limits_1^{\rm{e}} {\ln xf\left( x \right){\rm{d}}x} \)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiqaaqaabe % qaaiaadwhacqGH9aqpciGGSbGaaiOBaiaadIhaaeaacaqGKbGaamOD % aiabg2da9iaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaqGKb % GaamiEaaaacaGL7baaaaa!4433! \left\{ \begin{array}{l} u = \ln x\\ {\rm{d}}v = f\left( x \right){\rm{d}}x \end{array} \right.\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyO0H49aai % qaaqaabeqaaiaabsgacaWG1bGaeyypa0ZaaSaaaeaacaaIXaaabaGa % amiEaaaacaqGKbGaamiEaaqaaiaadAhacqGH9aqpcaWGgbWaaeWaae % aacaWG4baacaGLOaGaayzkaaaaaiaawUhaaaaa!4557! \Rightarrow \left\{ \begin{array}{l} {\rm{d}}u = \frac{1}{x}{\rm{d}}x\\ v = F\left( x \right) \end{array} \right.\)
Khi đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qCaKaaGg % aaciGGSbGaaiOBaiaadIhacaWGMbGcdaqadaqaaiaadIhaaiaawIca % caGLPaaajaaOcaqGKbGaamiEaaqcbaEaaiaaigdaaeaacaqGLbaajm % aOcqGHRiI8aaaa!450F! \int\limits_1^{\rm{e}} {\ln xf\left( x \right){\rm{d}}x} \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyypa0Zaaq % GaaeaacaWGgbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaciiBaiaa % c6gacaWG4baacaGLiWoadaqhaaWcbaGaaGymaaqaaiaabwgaaaGccq % GHsisldaWdXbqcaaAaaOWaaSaaaeaacaaIXaaabaGaamiEaaaacaWG % gbWaaeWaaeaacaWG4baacaGLOaGaayzkaaqcaaQaaeizaiaadIhaaK % qaGhaacaaIXaaabaGaaeyzaaqcdaQaey4kIipaaaa!4F6B! = \left. {F\left( x \right)\ln x} \right|_1^{\rm{e}} - \int\limits_1^{\rm{e}} {\frac{1}{x}F\left( x \right){\rm{d}}x} \)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqcaaQaeyypa0 % JaamOraOWaaeWaaeaacaqGLbaacaGLOaGaayzkaaGaciiBaiaac6ga % caqGLbGaeyOeI0IaamOramaabmaabaGaaGymaaGaayjkaiaawMcaai % GacYgacaGGUbGaaGymaiabgkHiTiaaigdaaaa!45F7! = F\left( {\rm{e}} \right)\ln {\rm{e}} - F\left( 1 \right)\ln 1 - 1\) = 3 -1 = 2