Tính diện tích hình phẳng giới hạn bởi các đường sau: \(\displaystyle y = 2x - {x^2},x + y = 2\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\displaystyle y = 2x - {x^2},y = 2 - x\)
Phương trình hoành độ giao điểm: \(\displaystyle 2x - {x^2} = 2 - x\) \(\displaystyle \Leftrightarrow {x^2} - 3x + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 2\end{array} \right.\)
Khi đó diện tích \(\displaystyle S = \int\limits_1^2 {\left| {2x - {x^2} - 2 + x} \right|dx} \) \(\displaystyle = \int\limits_1^2 {\left| { - {x^2} + 3x - 2} \right|dx} \) \(\displaystyle = \int\limits_1^2 {\left( { - {x^2} + 3x - 2} \right)dx} \)
\(\displaystyle = \left. {\left( { - \dfrac{{{x^3}}}{3} + \dfrac{3}{2}{x^2} - 2x} \right)} \right|_1^2\) \(\displaystyle = - \dfrac{8}{3} + 6 - 4 + \dfrac{1}{3} - \dfrac{3}{2} + 2 = \dfrac{1}{6}\)
Vậy \(\displaystyle S = \dfrac{1}{6}\).