Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = 2{x^2}\) và \(y = {x^4} - 2{x^2}\) trong miền \(x \ge 0.\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTrong miền \(x \ge 0\) hoành độ giao điểm của hai đồ thị là nghiệm phương trình:
\(\left\{ \matrix{
x \ge 0 \hfill \cr
{x^4} - 2{x^2} = 2{x^2} \hfill \cr} \right. \) \(\Leftrightarrow \left\{ \matrix{
x \ge 0 \hfill \cr
{x^2}\left( {{x^2} - 4} \right) = 0 \hfill \cr} \right.\) \(\Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = 2 \hfill \cr} \right.\)
Với \(0 \le x \le 2\) thì \(\left( {{x^4} - 2{x^2}} \right) - 2{x^2}\) \( = {x^4} - 4{x^2}\) \( = {x^2}\left( {{x^2} - 4} \right) \le 0\)
\( \Rightarrow \left| {{x^4} - 4{x^2}} \right| = 4{x^2} - {x^4}\)
\( \Rightarrow S = \int\limits_0^2 {\left| {\left( {{x^4} - 2{x^2}} \right) - 2{x^2}} \right|dx} \) \( = \int\limits_0^2 {\left| {{x^4} - 4{x^2}} \right|dx} \) \( = \int\limits_0^2 {\left( {4{x^2} - {x^4}} \right)dx} \) \( = \left. {\left( {4.\dfrac{{{x^3}}}{3} - \dfrac{{{x^5}}}{5}} \right)} \right|_0^2\) \( = 4.\dfrac{8}{3} - \dfrac{{32}}{5} = \dfrac{{64}}{{15}}\)