Trắc nghiệm Giới hạn của dãy số Toán Lớp 11
-
Câu 1:
\(\lim \left( {n - \sqrt[3]{{8{n^3} + 3n + 2}}} \right)\) bằng:
-
Câu 2:
Tính giới hạn \(I = \lim \left( {\sqrt {{n^2} - 2n + 3} - n} \right)\)
-
Câu 3:
\(\lim \frac{{\sin \left( {n!} \right)}}{{{n^2} + 1}}\) bằng
-
Câu 4:
Giới hạn của dãy số (un) với \({u_n} = \frac{{3{n^3} + 2n - 1}}{{2{n^2} - n}}\), bằng
-
Câu 5:
Giới hạn của dãy số (un) với \({u_n} = \frac{{{n^3} + 2n + 1}}{{{n^4} + 3{n^3} + 5{n^2} + 6}}\) bằng
-
Câu 6:
Tính \(\lim \;{u_n}\) với \({u_n} = \frac{{2{n^3} - 3{n^2} + n + 5}}{{{n^3} - {n^2} + 7}}\)?
-
Câu 7:
Tính \(\lim \;{u_n}\), với \({u_n} = \frac{{5{n^2} + 3n - 7}}{{{n^2}}}\)?
-
Câu 8:
Tính \(\lim \left( {5n - {n^2} + 1} \right)\)
-
Câu 9:
Tính \(\lim\left( {{n^3} - 2n + 1} \right)\)
-
Câu 10:
Tổng của cấp số nhân vô hạn : \(\frac{1}{2},\; - \frac{1}{4},\;....,\;\frac{{{{\left( { - 1} \right)}^{n + 1}}}}{{{2^n}}},....\) là
-
Câu 11:
\(\lim \frac{{\sqrt {2n + 3} }}{{\sqrt {2n} + 5}}\) bằng:
-
Câu 12:
\(\lim n\left( {\sqrt {{n^2} + 1} - \sqrt {{n^2} - 3} } \right)\) bằng?
-
Câu 13:
\(\lim \frac{{\sqrt {4{n^2} + 5} - \sqrt {n + 4} }}{{2n - 1}}\) bằng?
-
Câu 14:
Dãy số nào sau đây có giưới hạn là \( + \infty \)?
-
Câu 15:
\(\lim \left( {2{n^4} + 5{n^2} - 7n} \right)\) bằng
-
Câu 16:
\(\lim \left( { - 3{n^3} + 2{n^2} - 5} \right)\) bằng:
-
Câu 17:
\(\lim \frac{{n + \sin 2n}}{{n + 5}}\) bằng:
-
Câu 18:
\(\lim \frac{{1 + 2 + 3 + ... + n}}{{2{n^2}}}\) bằng
-
Câu 19:
\(\lim \frac{{\sqrt {n + 4} }}{{\sqrt n + 1}}\) có giá trị bằng?
-
Câu 20:
\(\lim \frac{{{2^n} + {3^n}}}{{{3^n}}}\) có giá trị bằng
-
Câu 21:
Dãy số nào sau đây có giới hạn bằng \(\frac{1}{5}\)?
-
Câu 22:
\(\lim \frac{{3{n^4} - 2n + 4}}{{4{n^2} + 2n + 3}} \) bằng?
-
Câu 23:
\(\lim \frac{{3{n^2} - 2n + 1}}{{4{n^4} + 2n + 1}}\) bằng?
-
Câu 24:
\(\lim \frac{{3 - 4n}}{{5n}}\) có giá trị bằng:
-
Câu 25:
Dãy số nào sau đây có giới hạn bằng 0?
-
Câu 26:
Dãy số nào sau đây có giới hạn khác 0?
-
Câu 27:
Tính giới hạn của dãy số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9maalaaabaGaaiikaiaad6gacqGH % RaWkcaaIXaGaaiykamaakaaabaGaaGymamaaCaaaleqabaGaaG4maa % aakiabgUcaRiaaikdadaahaaWcbeqaaiaaiodaaaGccqGHRaWkcaGG % UaGaaiOlaiaac6cacqGHRaWkcaWGUbWaaWbaaSqabeaacaaIZaaaaa % qabaaakeaacaaIZaGaamOBamaaCaaaleqabaGaaG4maaaakiabgUca % Riaad6gacqGHRaWkcaaIYaaaaaaa!4D3F! {u_n} = \frac{{(n + 1)\sqrt {{1^3} + {2^3} + ... + {n^3}} }}{{3{n^3} + n + 2}}\)
-
Câu 28:
Tính giới hạn của dãy số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9maalaaabaGaaGymaaqaaiaaikda % daGcaaqaaiaaigdaaSqabaGccqGHRaWkdaGcaaqaaiaaikdaaSqaba % aaaOGaey4kaSYaaSaaaeaacaaIXaaabaGaaG4mamaakaaabaGaaGOm % aaWcbeaakiabgUcaRiaaikdadaGcaaqaaiaaiodaaSqabaaaaOGaey % 4kaSIaaiOlaiaac6cacaGGUaGaey4kaSYaaSaaaeaacaaIXaaabaGa % aiikaiaad6gacqGHRaWkcaaIXaGaaiykamaakaaabaGaamOBaaWcbe % aakiabgUcaRiaad6gadaGcaaqaaiaad6gacqGHRaWkcaaIXaaaleqa % aaaaaaa!5138! {u_n} = \frac{1}{{2\sqrt 1 + \sqrt 2 }} + \frac{1}{{3\sqrt 2 + 2\sqrt 3 }} + ... + \frac{1}{{(n + 1)\sqrt n + n\sqrt {n + 1} }}\)
-
Câu 29:
Tính giới hạn của dãy số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9iaadghacqGHRaWkcaaIYaGaamyC % amaaCaaaleqabaGaaGOmaaaakiabgUcaRiaac6cacaGGUaGaaiOlai % abgUcaRiaad6gacaWGXbWaaWbaaSqabeaacaWGUbaaaaaa!447C! {u_n} = q + 2{q^2} + ... + n{q^n}\) với |q| < 1
-
Câu 30:
Tính giới hạn của dãy số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9maaqahabaWaaSaaaeaacaWGUbaa % baGaamOBamaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadUgaaaaale % aacaWGRbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaaa!43BE! {u_n} = \sum\limits_{k = 1}^n {\frac{n}{{{n^2} + k}}} \)
-
Câu 31:
Tính giới hạn của dãy số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9maaqahabaWaaSaaaeaacaaIYaGa % am4AaiabgkHiTiaaigdaaeaacaaIYaWaaWbaaSqabeaacaWGRbaaaa % aaaeaacaWGRbGaeyypa0JaaGymaaqaaiaad6gaa0GaeyyeIuoaaaa!4435! {u_n} = \sum\limits_{k = 1}^n {\frac{{2k - 1}}{{{2^k}}}} \)
-
Câu 32:
Tính giới hạn của dãy số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9maalaaabaGaaGOmamaaCaaaleqa % baGaaG4maaaakiabgkHiTiaaigdaaeaacaaIYaWaaWbaaSqabeaaca % aIZaaaaOGaey4kaSIaaGymaaaacaGGUaWaaSaaaeaacaaIZaWaaWba % aSqabeaacaaIZaaaaOGaeyOeI0IaaGymaaqaaiaaiodadaahaaWcbe % qaaiaaiodaaaGccqGHRaWkcaaIXaaaaiaac6cacaGGUaGaaiOlaiaa % c6cadaWcaaqaaiaad6gadaahaaWcbeqaaiaaiodaaaGccqGHsislca % aIXaaabaGaamOBamaaCaaaleqabaGaaG4maaaakiabgUcaRiaaigda % aaaaaa!5126! {u_n} = \frac{{{2^3} - 1}}{{{2^3} + 1}}.\frac{{{3^3} - 1}}{{{3^3} + 1}}....\frac{{{n^3} - 1}}{{{n^3} + 1}}\)
-
Câu 33:
Tính giới hạn của dãy số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9iaacIcacaaIXaGaeyOeI0YaaSaa % aeaacaaIXaaabaGaamivamaaBaaaleaacaaIXaaabeaaaaGccaGGPa % GaaiikaiaaigdacqGHsisldaWcaaqaaiaaigdaaeaacaWGubWaaSba % aSqaaiaaikdaaeqaaaaakiaacMcacaGGUaGaaiOlaiaac6cacaGGOa % GaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaadsfadaWgaaWcbaGa % amOBaaqabaaaaOGaaiykaaaa!4C2E! {u_n} = (1 - \frac{1}{{{T_1}}})(1 - \frac{1}{{{T_2}}})...(1 - \frac{1}{{{T_n}}})\) trong đó \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamivamaaBa % aaleaacaWGUbaabeaakiabg2da9maalaaabaGaamOBaiaacIcacaWG % UbGaey4kaSIaaGymaiaacMcaaeaacaaIYaaaaaaa!3EA4! {T_n} = \frac{{n(n + 1)}}{2}\).
-
Câu 34:
Tính giới hạn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacM % gacaGGTbWaamWaaeaadaqadaqaaiaaigdacqGHsisldaWcaaqaaiaa % igdaaeaacaaIYaWaaWbaaSqabeaacaaIYaaaaaaaaOGaayjkaiaawM % caamaabmaabaGaaGymaiabgkHiTmaalaaabaGaaGymaaqaaiaaioda % daahaaWcbeqaaiaaikdaaaaaaaGccaGLOaGaayzkaaGaaiOlaiaac6 % cacaGGUaWaaeWaaeaacaaIXaGaeyOeI0YaaSaaaeaacaaIXaaabaGa % amOBamaaCaaaleqabaGaaGOmaaaaaaaakiaawIcacaGLPaaaaiaawU % facaGLDbaaaaa!4E04! \lim \left[ {\left( {1 - \frac{1}{{{2^2}}}} \right)\left( {1 - \frac{1}{{{3^2}}}} \right)...\left( {1 - \frac{1}{{{n^2}}}} \right)} \right]\)
-
Câu 35:
Tính giới hạn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacM % gacaGGTbWaamWaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaaiOlaiaa % isdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiaac6cacaaI1a % aaaiabgUcaRiaac6cacaGGUaGaaiOlaiabgUcaRmaalaaabaGaaGym % aaqaaiaad6gacaGGOaGaamOBaiabgUcaRiaaiodacaGGPaaaaaGaay % 5waiaaw2faaaaa!4B08! \lim \left[ {\frac{1}{{1.4}} + \frac{1}{{2.5}} + ... + \frac{1}{{n(n + 3)}}} \right]\)
-
Câu 36:
Tính giới hạn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacM % gacaGGTbWaamWaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaaiOlaiaa % iodaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiaac6cacaaI0a % aaaiabgUcaRiaac6cacaGGUaGaaiOlaiaac6cacqGHRaWkdaWcaaqa % aiaaigdaaeaacaWGUbWaaeWaaeaacaWGUbGaey4kaSIaaGOmaaGaay % jkaiaawMcaaaaaaiaawUfacaGLDbaaaaa!4BE8! \lim \left[ {\frac{1}{{1.3}} + \frac{1}{{2.4}} + .... + \frac{1}{{n\left( {n + 2} \right)}}} \right]\)
-
Câu 37:
Tìm \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacM % gacaGGTbWaamWaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaaiOlaiaa % iodaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaG4maiaac6cacaaI1a % aaaiabgUcaRiaac6cacaGGUaGaaiOlaiaac6cacqGHRaWkdaWcaaqa % aiaaigdaaeaacaWGUbWaaeWaaeaacaaIYaGaamOBaiabgUcaRiaaig % daaiaawIcacaGLPaaaaaaacaGLBbGaayzxaaaaaa!4CA5! \lim \left[ {\frac{1}{{1.3}} + \frac{1}{{3.5}} + .... + \frac{1}{{n\left( {2n + 1} \right)}}} \right]\)
-
Câu 38:
Tính giới hạn \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaciiBaiaacM % gacaGGTbWaamWaaeaadaWcaaqaaiaaigdaaeaacaaIXaGaaiOlaiaa % ikdaaaGaey4kaSYaaSaaaeaacaaIXaaabaGaaGOmaiaac6cacaaIZa % aaaiabgUcaRiaac6cacaGGUaGaaiOlaiaac6cacqGHRaWkdaWcaaqa % aiaaigdaaeaacaWGUbWaaeWaaeaacaWGUbGaey4kaSIaaGymaaGaay % jkaiaawMcaaaaaaiaawUfacaGLDbaaaaa!4BE5! \lim \left[ {\frac{1}{{1.2}} + \frac{1}{{2.3}} + .... + \frac{1}{{n\left( {n + 1} \right)}}} \right]\)
-
Câu 39:
Tìm giá trị đúng của \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uaiabg2 % da9maakaaabaGaaGOmaaWcbeaakmaabmaabaGaaGymaiabgUcaRmaa % laaabaGaaGymaaqaaiaaikdaaaGaey4kaSYaaSaaaeaacaaIXaaaba % GaaGinaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaI4aaaaiabgUca % Riaac6cacaGGUaGaaiOlaiabgUcaRmaalaaabaGaaGymaaqaaiaaik % dadaahaaWcbeqaaiaad6gaaaaaaOGaey4kaSIaaiOlaiaac6cacaGG % UaGaaiOlaiaac6cacaGGUaGaaiOlaaGaayjkaiaawMcaaaaa!4E85! S = \sqrt 2 \left( {1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ... + \frac{1}{{{2^n}}} + .......} \right)\)
-
Câu 40:
Tìm lim \(u_n\) biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9maayaaabaWaaOaaaeaacaaIYaWa % aOaaaeaacaaIYaGaaiOlaiaac6cacaGGUaWaaOaaaeaacaaIYaaale % qaaaqabaaabeaaaeaacaWGUbGaaeiiaiaabsgacaqGHbGaaeyDaiaa % bccacaqGJbGaaeyyaiaab6gaaOGaayjo+daaaa!474E! {u_n} = \underbrace {\sqrt {2\sqrt {2...\sqrt 2 } } }_{n{\rm{ dau can}}}\)
-
Câu 41:
Tìm lim \(u_n\) biết \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa % aaleaacaWGUbaabeaakiabg2da9maaqahabaWaaSaaaeaacaaIXaaa % baWaaOaaaeaacaWGUbWaaWbaaSqabeaacaaIYaaaaOGaey4kaSIaam % 4AaaWcbeaaaaaabaGaam4Aaiabg2da9iaaigdaaeaacaWGUbaaniab % ggHiLdaaaa!4396! {u_n} = \sum\limits_{k = 1}^n {\frac{1}{{\sqrt {{n^2} + k} }}} \)