Cho cấp số nhân \(\left( {{u_n}} \right)\) có \({u_5} = 2\) và \({u_9} = 6\). Tính \({u_{21}}\)?
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiPhương pháp giải:
Dựa vào giả thuyết, ta lập một hệ phương trình chứa công bội q và số hạng đầu \({u_1}\), giải hệ phương trình này tìm được q và \({u_1}\).
Lời giải chi tiết:
Ta có \(\left\{ \begin{array}{l}{u_5} = 2\\{u_9} = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}{q^4} = 2\\{u_1}{q^8} = 6\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{2}{3}\\{q^4} = 3\end{array} \right.\).
Suy ra \({u_{21}} = {u_1}{q^{20}} = {u_1}{\left( {{q^4}} \right)^5} = \frac{2}{3}{.3^5} = 162\).
Đáp án C
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK1 môn Toán 11 năm 2023 - 2024
Trường THPT Trần Hưng Đạo
27/11/2024
26 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9