Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là tứ giác lồi. Gọi \(O\)là giao điểm của \(AC\) và \(BD\), \(M\)là giao điểm của \(AB\) và \(CD\), \(N\)là giao điểm của \(AD\) và \(BC\). Giao tuyến của hai mặt phẳng \(\left( {SAB} \right)\)và \(\left( {SCD} \right)\) là?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét \(\left( {SAB} \right)\) và \(\left( {SCD} \right)\) có:
+ \(S\) là điểm chung thứ nhất.
+ \(M = AB \cap CD \Rightarrow \left\{ {\begin{array}{*{20}{l}}{M \in AB \subset \left( {SAB} \right) \Rightarrow M \in \left( {SAB} \right)}\\{M \in CD \subset \left( {SCD} \right) \Rightarrow M \in \left( {SCD} \right)}\end{array}} \right.\)
\( \Rightarrow M \in \left( {SAB} \right) \cap \left( {SCD} \right) \Rightarrow M\) là điểm chung thứ hai.
Vậy \(\left( {SAB} \right) \cap \left( {SCD} \right) = SM\).
Chọn C
Đề thi giữa HK1 môn Toán 11 năm 2022-2023
Trường THPT Trần Phú