Cho \(\left( {{u_n}} \right)\) là một cấp số cộng thỏa mãn \({u_1} + {u_3} = 8\) và \({u_4} = 10\). Công sai của cấp số cộng đã cho bằng?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương pháp giải:
Dựa vào giả thuyết, ta lập một hệ phương trình chứa công sai d và số hạng đầu \({u_1}\), giải hệ phương trình này tìm được d và \({u_1}\).
Lời giải chi tiết:
Ta có: \(\left\{ \begin{array}{l}{u_1} + {u_3} = 8\\{u_4} = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + {u_1} + 2d = 8\\{u_1} + 3d = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2{u_1} + 2d = 8\\{u_1} + 3d = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 3\end{array} \right.\).
Vậy công sai của cấp số cộng là \(d = 3\).
Đáp án A
Đề thi giữa HK1 môn Toán 11 năm 2023 - 2024
Trường THPT Trần Hưng Đạo