Tính giá trị của biểu thức: \(\frac{1}{{\tan {{368}^\circ }}} + \frac{{2\sin {{2550}^\circ }\cos ( - {{188}^\circ })}}{{2\cos {{638}^\circ } + \cos {{98}^\circ }}}\)?
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
\(\frac{1}{{\tan {{368}^\circ }}} + \frac{{2\sin {{2550}^\circ }\cos ( - {{188}^\circ })}}{{2\cos {{638}^\circ } + \cos {{98}^\circ }}} = \frac{1}{{\tan \left( {{{360}^0} + {8^0}} \right)}} + \frac{{2\sin \left( {{{7.360}^0} + {{30}^0}} \right)\cos \left( {{{180}^0} + {8^0}} \right)}}{{2\cos \left( {{{2.360}^0} - {{82}^0}} \right) + \cos \left( {{{90}^0} + {8^0}} \right)}}\)
\( = \frac{1}{{\tan {8^0}}} + \frac{{2\sin {{30}^0}\left( { - \cos {8^0}} \right)}}{{2\cos \left( {{8^0} - {{90}^0}} \right) - \sin {8^0}}}\)\( = \frac{1}{{\tan {8^0}}} + \frac{{2.\frac{1}{2}\left( { - \cos {8^0}} \right)}}{{2\cos \left( {{{90}^0} - {8^0}} \right) - \sin {8^0}}}\)
\( = \frac{1}{{\tan {8^0}}} - \frac{{\cos {8^0}}}{{2\sin {8^0} - \sin {8^0}}} = \frac{1}{{\tan {8^0}}} - \frac{{\cos {8^0}}}{{\sin {8^0}}} = \frac{1}{{\tan {8^0}}} - \frac{1}{{\tan {8^0}}} = 0\)
Đáp án D
Đề thi giữa HK1 môn Toán 11 CD năm 2023-2024
Trường THPT Trần Nhân Tông