Đề thi giữa HK1 môn Toán 11 năm 2021-2022
Trường THPT Cao Thắng
-
Câu 1:
Giải phương trình \({\tan ^2}3x - 1 = 0\).
A. \(x = \pm \dfrac{\pi }{4} + k\pi \)
B. \(x = \pm \dfrac{\pi }{{12}} + k\pi \)
C. \(x = \pm \dfrac{\pi }{8} + k\dfrac{\pi }{2}\)
D. \(x = \pm \dfrac{\pi }{{12}} + k\dfrac{\pi }{3}\)
-
Câu 2:
Tìm tập xác định \(D\) của hàm số \(y = \dfrac{{1 - 4\sin x}}{{\cos x}}\).
A. \(D = \mathbb{R}\backslash \left\{ {k\pi ,\,\,k \in \mathbb{Z}} \right\}\)
B. \(D = \mathbb{R}\backslash \left\{ {k2\pi ,\,\,k \in \mathbb{Z}} \right\}\)
C. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}} \right\}\)
D. \(D = \mathbb{R}\backslash \left\{ {\dfrac{\pi }{2} + k2\pi ,\,\,k \in \mathbb{Z}} \right\}\)
-
Câu 3:
Cho 6 chữ số 2, 3, 4, 5, 6, 7. Số các số tự nhiên chẵn có 3 chữ số được lập từ 6 chữ số trên là:
A. 36
B. 18
C. 256
D. 108
-
Câu 4:
Tính giá trị biểu thức \(P = {\sin ^2}{45^0} - \cos {60^0}\).
A. \(P = 0\)
B. \(P = \dfrac{1}{2}\)
C. \(P = 1\)
D. \(P = - 1\)
-
Câu 5:
Cho P, Q cố định và phép tịnh tiến T biến điểm M bất kỳ thành \({M_2}\) sao cho \(\overrightarrow {M{M_2}} = 2\overrightarrow {PQ} \). Chọn kết luận đúng
A. T là phép tịnh tiến theo vectơ \(\overrightarrow {PQ} \)
B. T là phép tịnh tiến theo vectơ \(\overrightarrow {M{M_2}} \)
C. T là phép tịnh tiến theo vectơ \(2\overrightarrow {PQ} \)
D. T là phép tịnh tiến theo vectơ \({1 \over 2}\overrightarrow {PQ} \)
-
Câu 6:
Trong mặt phẳng Oxy, phép tịnh tiến theo vectơ \(\vec v = (1;3)\) biến điểm A (1;2) thành điểm nào trong các điểm sau đây ?
A. (2;5)
B. (1;3)
C. (3;4)
D. (-3;4)
-
Câu 7:
Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép tịnh tiến theo vectơ \(\vec v = ( - 3; - 2)\), phép tịnh tiến theo \(\vec v\) biến đường tròn \((C):{x^2} + {(y - 1)^2} = 1\) thành đường tròn \((C')\). Khi đó phương trình của \((C')\) là :
A. \({\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} = 1\)
B. \({\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} = 1\)
C. \({\left( {x + 3} \right)^2} + {\left( {y + 1} \right)^2} = 4\)
D. \({\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} = 4\)
-
Câu 8:
Giải phương trình \({\mathop{\rm s}\nolimits} {\rm{in2}}x - \cos 2x = - \sqrt 2 \).
A. \(x = - \dfrac{\pi }{4} + k2\pi \)
B. \(x = \dfrac{{3\pi }}{8} + k\pi \)
C. \(x = - \dfrac{\pi }{8} + k\pi \)
D. \(x = \dfrac{\pi }{4} + k\pi \)
-
Câu 9:
Phương trình nào sau đây có nghiệm?
A. \(5\sin x - 2\cos x = 3\)
B. \(\sin x + \cos x = 2\)
C. \(\sin x - 4\cos x = - 5\)
D. \(\cos x + \sqrt 3 \sin x = 3\)
-
Câu 10:
Tìm giá trị lớn nhất \(M\) của hàm số \(y = 7\cos 5x - 1\).
A. \(M = 7\)
B. \(M = 5\)
C. \(M = 6\)
D. M = 8
-
Câu 11:
Có bao nhiêu số tự nhiên có 3 chữ số:
A. 900
B. 901
C. 899
D. 999
-
Câu 12:
Cho các chữ số 1, 2, 3, …, 9. Từ các số đó có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau
A. 3024
B. 2102
C. 3211
D. 3452
-
Câu 13:
Từ thành phố A đến thành phố B có 6 con đường, từ thành phố B đến thành phố C có 7 con đường. Có bao nhiêu cách đi từ thành phố A đến thành phố C, biết phải đi qua thành phố B.
A. 46
B. 48
C. 42
D. 44
-
Câu 14:
Giả sử rằng qua phép đối xứng trục \({{\rm{D}}_a}\) ( a là trục đối xứng ), đường thẳng d biến thành đường thẳng \(d'\). Hãy chọn câu sai trong các câu sau ?
A. Khi d song song với a thì d song song với \(d'\).
B. d vuông góc với a thì d trùng với \(d'\).
C. Khi d cắt a thì d cắt \(d'\). Khi đó giao điểm của d và \(d'\) nằm trên a.
D. Khi d tạo với a một góc \({45^0}\) thì d vuông góc với \(d'\).
-
Câu 15:
Trong mặt phẳng Oxy, cho parabol \((P):{y^2} = x\). Hỏi parabol nào sau đây là ảnh của parabol (P) qua phép đối xứng trục Oy ?
A. \({y^2} = x\)
B. \({y^2} = - x\)
C. \({x^2} = - y\)
D. \({x^2} = y\)
-
Câu 16:
Trong mặt phẳng Oxy, cho điểm M (1;5). Tìm ảnh của M qua phép đối xứng trục Ox.
A. \(M'( - 1;5)\)
B. \(M'( - 1; - 5)\)
C. \(M'(1; - 5)\)
D. \(M'(0; - 5)\)
-
Câu 17:
Trong các mệnh đề sau mệnh đề nào đúng?
A. Phép đối xứng tâm không có điểm nào biến thành chính nó.
B. Phép đối xứng tâm có đúng một điểm biến thành chính nó.
C. Có phép đối xứng tâm có hai điểm biến thành chính nó.
D. Có phép đối xứng tâm có vô số điểm biến thành chính nó.
-
Câu 18:
Giải phương trình \(\sqrt 3 \sin x + \cos x = 1\).
A. \(x = k2\pi ;\,\,x = \dfrac{{2\pi }}{3} + k2\pi \)
B. \(x = - \dfrac{\pi }{3} + k2\pi ;\,\,x = \dfrac{{4\pi }}{3} + k2\pi \)
C. \(x = - \dfrac{\pi }{6} + k2\pi ;\,\,x = \dfrac{\pi }{2} + k2\pi \)
D. \(x = \dfrac{\pi }{6} + k2\pi ;\,\,x = \dfrac{{5\pi }}{6} + k2\pi \)
-
Câu 19:
Phương trình nào sau đây vô nghiệm?
A. \(9 - \cot x = 0\)
B. \(2\tan x + 9 = 0\)
C. \(1 - 4\sin x = 0\)
D. \(5 + 4\cos x = 0\)
-
Câu 20:
Một người vào cửa hàng ăn, người đó chọn thực đơn gồm 1 món ăn trong 5 món, 1 loại quả tráng miệng trong 5 loại quả tráng miệng và một loại nước uống trong 3 loại nước uống. Có bao nhiêu cách chọn thực đơn:
A. 25
B. 75
C. 100
D. 15
-
Câu 21:
Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).
A. 7!
B. 35831808
C. 12!
D. 3991680
-
Câu 22:
Trong mặt phẳng Oxy, cho đường thẳng \(d:x + y - 2 = 0\), ảnh của d qua phép đối xứng tâm I (1;2) là đường thẳng:
A. \(d':x + y + 4 = 0\)
B. \(d':x + y - 4 = 0\)
C. \(d':x - y + 4 = 0\)
D. \(d':x - y - 4 = 0\)
-
Câu 23:
Trong mặt phẳng tọa độ Oxy, tìm phương trình đường tròn \((C')\) là ảnh của đường tròn \((C):{x^2} + {y^2} = 1\) qua phép đối xứng tâm I (1;0).
A. \({\left( {x - 2} \right)^2} + {y^2} = 1\)
B. \({\left( {x + 2} \right)^2} + {y^2} = 1\)
C. \({x^2} + {(y - 2)^2} = 1\)
D. \({x^2} + {(y + 2)^2} = 1\)
-
Câu 24:
Hàm số nào sau đây là hàm số chẵn.
A. \(y = \sin x\)
B. \(y = \cos x\)
C. \(y = \cot x\)
D. \(y = \tan x\)
-
Câu 25:
Giải phương trình \(2{\sin ^2}x - 3\sin x - 2 = 0\).
A. \(x = - \dfrac{\pi }{3} + k2\pi ;\,\,\,x = \dfrac{{4\pi }}{3} + k2\pi \)
B. \(x = \dfrac{\pi }{6} + k2\pi ;\,\,\,x = \dfrac{{5\pi }}{6} + k2\pi \)
C. \(x = - \dfrac{\pi }{6} + k2\pi ;\,\,\,x = \dfrac{{7\pi }}{6} + k2\pi \)
D. \(x = \dfrac{\pi }{3} + k2\pi ;\,\,\,x = \dfrac{{2\pi }}{3} + k2\pi \)
-
Câu 26:
Giải phương trình \(\tan \left( {2x} \right) = \tan {\rm{8}}{0^0}\).
A. \(x = {40^0} + k{180^0}\)
B. \(x = {40^0} + k{90^0}\)
C. \(x = {40^0} + k{45^0}\)
D. \(x = {80^0} + k{180^0}\)
-
Câu 27:
Cho tam giác đều tâm O. Hỏi có bao nhiêu phép quay tâm O góc quay \(\alpha ,0 < \alpha \le 2\pi \) biến tam giác trên thành chính nó ?
A. Một
B. Hai
C. Ba
D. Bốn
-
Câu 28:
Phép quay \({Q_{(O;\varphi )}}\) biến điểm A thành M. Khi đó
(I): O cách đều A và M.
(II): O thuộc đường tròn đường kính AM.
(III): O nằm trên cung chứa góc\(\varphi \)dựng trên đoạn AM.
Trong các câu trên, câu đúng là:
A. Cả 3 câu
B. (I) và (II)
C. (I)
D. (I) và (III)
-
Câu 29:
Cho M ( 3;4) . Tìm ảnh của điểm M qua phép quay tâm O góc quay \({30^0}\).
A. \(M'\left( {{{3\sqrt 3 } \over 2};{3 \over 2} + 2\sqrt 3 } \right)\)
B. \(M'\left( { - 2;2\sqrt 3 } \right)\)
C. \(M'\left( {{{3\sqrt 3 } \over 2};2\sqrt 3 } \right)\)
D. \(M'\left( {{{3\sqrt 3 } \over 2} - 2;{3 \over 2} + 2\sqrt 3 } \right)\)
-
Câu 30:
Trong mặt phẳng Oxy cho đường thẳng d có phương trình: x + y - 2 = 0. Hỏi phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng tâm O và phép tịnh tiến theo vectơ \(\vec v = \left( {3;2} \right)\) biến đường thẳng d thành đường thẳng nào trong các đường thẳng sau ?
A. \(3x + 3y - 2 = 0\)
B. \(x - y + 2 = 0\)
C. \(x + y + 2 = 0\)
D. \(x + y - 3 = 0\)
-
Câu 31:
Giải phương trình \(1 + \cos x = 0\).
A. \(x = \dfrac{\pi }{2} + k2\pi \)
B. \(x = \pi + k2\pi \)
C. \(x = \dfrac{\pi }{2} + k\pi \)
D. \(x = k2\pi \)
-
Câu 32:
Giải phương trình \(\sin 6x - \cos 4x = 0\).
A. \(x = \dfrac{\pi }{{20}} + k\dfrac{\pi }{5};\,x = \dfrac{\pi }{4} + k\pi \)
B. \(x = \dfrac{\pi }{{20}} + k\dfrac{\pi }{5};\,x = \dfrac{\pi }{4} + k\dfrac{\pi }{2}\)
C. \(x = \dfrac{\pi }{4} + k\pi ;\,x = \dfrac{\pi }{{20}} + k\dfrac{{2\pi }}{5}\)
D. \(x = k\pi ;\,x = \dfrac{\pi }{{10}} + k\dfrac{\pi }{5}\)
-
Câu 33:
Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chẵn:
A. 360
B. 343
C. 523
D. 347
-
Câu 34:
Từ các số 2,3,4,5 có thể lập được bao nhiêu số gồm 4 chữ số:
A. 256
B. 120
C. 24
D. 16
-
Câu 35:
Cho tập \(A = \left\{ {1,2,3,4,5,6,7,8} \right\}\). Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao cho các số này lẻ và không chia hết cho 5:
A. 23523
B. 15120
C. 16862
D. 23145
-
Câu 36:
Cho phương trình \(\cos 4x = 3m - 5\). Tìm \(m\) để phương trình đã cho có nghiệm.
A. \( - 1 \le m \le 1\)
B. \(\dfrac{4}{3} \le m \le 2\)
C. \( - 2 \le m \le \dfrac{4}{3}\)
D. \(\dfrac{4}{3} \le m \le 3\)
-
Câu 37:
Cho tam giác ABC với trọng tâm G. Gọi \(A',B',C'\) lần lượt là trung điểm của các cạnh BC, AC, AB của tam giác ABC. Khi đó phép vị tự nào biến tam giác \(A'B'C'\) thành tam giác ABC ?
A. Phép vị tự tâm G, tỉ số 2.
B. Phép vị tự tâm G, tỉ số - 2.
C. Phép vị tự tâm G, tỉ số - 3.
D. Phép vị tự tâm G, tỉ số 3.
-
Câu 38:
Trong mặt phẳng với hệ trục tọa độ Oxy. Cho hai đường tròn \(\left( C \right),\left( {C'} \right)\) trong đó \(\left( {C'} \right)\) có phương trình: \({\left( {x + 2} \right)^2} + {\left( {y + 1} \right)^2} = 9\) . Gọi V là phép vị tự tâm \(I (1;0)\) tỉ số k = 3 biến đường tròn \(\left( C \right)\) thành \(\left( {C'} \right)\). Khi đó phương trình của \(\left( C \right)\) là:
A. \({\left( {x - {1 \over 3}} \right)^2} + {y^2} = 1\)
B. \({x^2} + {\left( {y - {1 \over 3}} \right)^2} = 9\)
C. \({x^2} + {\left( {y + {1 \over 3}} \right)^2} = 1\)
D. \({x^2} + {y^2} = 1\)
-
Câu 39:
Cho phương trình \(2\cos 4x - {\rm{sin4}}x = m\) . Tìm tất cả các giá trị của \(m\) để phương trình đã cho có nghiệm.
A. \( - \sqrt 3 \le m \le \sqrt 3 \)
B. \(m \le - \sqrt 3 ;\,\,m \ge \sqrt 3 \)
C. \( - \sqrt 5 \le m \le \sqrt 5 \)
D. \(m \le - \sqrt 5 ;\,\,m \ge \sqrt 5 \)
-
Câu 40:
Trong mặt phẳng với hệ trục tọa độ Oxy cho A (1;2), B (-3;1). Phép vị tự tâm I (2;-1) tỉ số k = 2 biến điểm A thành \(A'\), phép đối xứng tâm B biến \(A'\) thành \(B'\). Tọa độ điểm \(B'\) là :
A. (0;5)
B. (5;0)
C. (-6;-3)
D. (-3;-6)