Giải bất phương trình \(\displaystyle {\log _3}(x - 3) + {\log _3}(x - 5) < 1\).
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Lời giải:
Báo saiĐiều kiện: \(\displaystyle \left\{ \begin{array}{l}x - 3 > 0\\x - 5 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 3\\x > 5\end{array} \right. \Leftrightarrow x > 5\).
Khi đó bpt\(\displaystyle \Leftrightarrow {\log _3}{\rm{[}}(x - 3)(x - 5){\rm{]}} < {\log _3}3\) \(\displaystyle \Leftrightarrow \left( {x - 3} \right)\left( {x - 5} \right) < 3\) \(\displaystyle \Leftrightarrow {x^2} - 8x + 15 < 3\)
\(\displaystyle \Leftrightarrow {x^2} - 8x + 12 < 0\) \(\displaystyle \Leftrightarrow 2 < x < 6\).
Kết hợp điều kiện ta được \(\displaystyle 5 < x < 6\).
ADMICRO
YOMEDIA
ZUNIA9