Tìm nguyên hàm của hàm số \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadIhacaWGLbWaaWba % aSqabeaacaWG4baaaOGaaiOlaaaa!3E38! f\left( x \right) = x{e^x}.\)
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa8qaaeaaca % WG4bGaamyzamaaCaaaleqabaGaamiEaaaaaeqabeqdcqGHRiI8aOGa % aeizaiaadIhacqGH9aqpdaWdbaqaaiaadIhaaSqabeqaniabgUIiYd % GccaqGKbWaaeWaaeaacaWGLbWaaWbaaSqabeaacaWG4baaaaGccaGL % OaGaayzkaaGaeyypa0JaamiEaiaadwgadaahaaWcbeqaaiaadIhaaa % GccqGHsisldaWdbaqaaiaadwgadaahaaWcbeqaaiaadIhaaaaabeqa % b0Gaey4kIipakiaabsgacaWG4bGaeyypa0JaamiEaiaadwgadaahaa % WcbeqaaiaadIhaaaGccqGHsislcaWGLbWaaWbaaSqabeaacaWG4baa % aOGaey4kaSIaam4qaiabg2da9maabmaabaGaamiEaiabgkHiTiaaig % daaiaawIcacaGLPaaacaWGLbWaaWbaaSqabeaacaWG4baaaOGaey4k % aSIaam4qaiaac6caaaa!62FC! \int {x{e^x}} {\rm{d}}x = \int x {\rm{d}}\left( {{e^x}} \right) = x{e^x} - \int {{e^x}} {\rm{d}}x = x{e^x} - {e^x} + C = \left( {x - 1} \right){e^x} + C.\)