Viết phương trình mặt cầu ngoại tiếp tứ diện ABCD biết A(2;-1;6), B(-3;-1;-4),C(5;-1;0), D(1;2;1).
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi I(x;y;z) là tâm mặt cầu ngoại tiếp tứ diện ABCD.
Từ điều kiện \(I{A^2} = I{B^2},I{A^2} = I{C^2},I{A^2} = I{D^2}\), ta có hệ phương trình
\(\left\{ \matrix{ - 10x = 20z + 15 = 0 \hfill \cr 6x - 12z + 15 = 0 \hfill \cr - 2x + 6y - 10z + 35 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ x = - {1 \over 2} \hfill \cr y = - {{13} \over 3} \hfill \cr z = 1. \hfill \cr} \right.\)
Vậy mặt cầu cần tìm có tâm \(I\left( { - {1 \over 2}; - {{13} \over 3};1} \right)\) và bán kính là
\(\eqalign{ & R = IC \cr&= \sqrt {{{\left( {5 + {1 \over 2}} \right)}^2} + {{\left( { - 1 + {{13} \over 3}} \right)}^2} + {{(0 - 1)}^2}} \cr & = \sqrt {{{121} \over 4} + {{100} \over 9} + 1} = \sqrt {{{1525} \over {36}}.} \cr} \)
Do đó phương trình mặt cầu ngoại tiếp tứ diện ABCD là
\({\left( {x + {1 \over 2}} \right)^2} + {\left( {y + {{13} \over 3}} \right)^2} + {\left( {z - 1} \right)^2} = {{1525} \over {36}}.\)