Cho tứ diện \(ABCD\) có \(A\left( {1;0;0} \right),B\left( {0;1;1} \right),C\left( { - 1;2;0} \right),\)\(\,D\left( {0;0;3} \right)\). Tọa độ trọng tâm tứ diện \(G\) là:
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo saiĐiểm \(G\) là trọng tâm tứ diện \(ABCD\) nếu tọa độ điểm \(G\) thỏa mãn:
\(\left\{ \begin{array}{l}{x_G} = \dfrac{{{x_A} + {x_B} + {x_C} + {x_D}}}{4} = \dfrac{{1 + 0 - 1 + 0}}{4} = 0\\{y_G} = \dfrac{{{y_A} + {y_B} + {y_C} + {y_D}}}{4} = \dfrac{{0 + 1 + 2 + 0}}{4} = \dfrac{3}{4}\\{z_G} = \dfrac{{{z_A} + {z_B} + {z_C} + {z_D}}}{4} = \dfrac{{0 + 1 + 0 + 3}}{4} = 1\end{array} \right. \)
\(\Rightarrow G\left( {0;\dfrac{3}{4};1} \right)\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9