Số điểm cực trị của hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x - 1} \right)^2},\forall \,x \in \mathbb{R}\) là
Chính xác
Xem lời giải
Suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 12
Lời giải:
Báo sai\(f'\left( x \right) = x{\left( {x - 1} \right)^2},\forall \,x \in \mathbb{R}\) \( \Rightarrow \) hàm số \(f\left( x \right)\) có tập xác định là \(\mathbb{R}\) và \(f'\left( x \right)\) đổi dấu khi \(x\) đi qua khi chỉ tạ một điểm \(0.\)
Vậy hàm số đã cho chỉ có một điểm cực trị.
Đáp án A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi HK1 môn Toán 12 năm 2021-2022
Trường THPT Hoàng Hoa Thám
26/11/2024
75 lượt thi
0/40
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9