Cho F(x) là một nguyên hàm của hàm số \(f(x) = {e^x} + 2x\) thỏa mãn \(F(0) = \dfrac{3}{2}\). Tìm F(x).
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có: \(\int {\left( {{e^x} + 2x} \right)\,} dx = {e^x} + {x^2} + C.\)
Theo giải thiết ta có: \(F\left( 0 \right) = \dfrac{3}{2} \)
\(\Rightarrow {e^0} + {0^2} + C = \dfrac{3}{2} \Rightarrow C = \dfrac{1}{2}\)
Khi đó ta có: \(F\left( x \right) = {e^x} + {x^2} + \dfrac{1}{2}\)
Chọn đáp án B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9