Để tính \(I = \int\limits_0^{\dfrac{\pi }{2}} {{x^2}\cos x\,dx} \) theo phương pháp tích pân từng phần , ta đặt:
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiPhương pháp tích phân từng phần
Đặt \(\left\{ \begin{array}{l}u = {x^2}\\dv = \cos x\,dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = 2x\,dx\\v = \sin x\end{array} \right.\)
Chọn đáp án B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9