Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^3}\left( {x + 2} \right)\). Hàm số \(f\left( x \right)\) có mấy điểm cực trị?
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiDo \(f'\left( x \right) = {x^2}{\left( {x + 1} \right)^3}\left( {x + 2} \right)\) có các nghiệm \(x = 0\) (bội \(2\)) nên loại.
Ngoài ra \(f'\left( x \right) = 0\) có hai nghiệm bội lẻ, đó là \({x_1} = - 1,{x_2} = - 2\).
Vậy hàm số có có \(2\) điểm cực trị.
Chọn B.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Phan Bội Châu
29/11/2024
78 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9