Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {1;2} \right]\) và thỏa mãn \(f\left( x \right) > 0\) khi \(x \in \left[ {1;2} \right]\). Biết \(\int\limits_1^2 {f'\left( x \right)dx} = 10\) và \(\int\limits_1^2 {\frac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \ln 2\). Tính \(f\left( 2 \right)\).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\int\limits_1^2 {\frac{{f'\left( x \right)}}{{f\left( x \right)}}dx} = \ln 2\) \( \Leftrightarrow \int\limits_1^2 {\frac{{d\left( {f\left( x \right)} \right)}}{{f\left( x \right)}}} = \ln 2\) \( \Leftrightarrow \left. {\ln f\left( x \right)} \right|_1^2 = \ln 2 \Leftrightarrow \ln f\left( 2 \right) - \ln f\left( 1 \right) = \ln 2\)\( \Leftrightarrow f\left( 2 \right) = 2f\left( 1 \right)\)
Lại có: \(\int\limits_1^2 {f'\left( x \right)dx} = 10 \Leftrightarrow \left. {f\left( x \right)} \right|_1^2 = 10 \Leftrightarrow f\left( 2 \right) - f\left( 1 \right) = 10\)
Từ đó \(\left\{ \begin{array}{l}f\left( 2 \right) = 2f\left( 1 \right)\\f\left( 2 \right) - f\left( 1 \right) = 10\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}f\left( 2 \right) = 20\\f\left( 1 \right) = 10\end{array} \right.\).
Chọn C.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lê Minh Xuân