Trong không gian với hệ tọa độ \(Oxyz\) cho ba đường thẳng \({d_1}:\left\{ \begin{array}{l}x = t\\y = 4 - t\\z = - 1 + 2t\end{array} \right.\), \({d_2}:\frac{x}{1} = \frac{{y - 2}}{{ - 3}} = \frac{z}{{ - 3}}\) và \({d_3}:\frac{{x + 1}}{5} = \frac{{y - 1}}{2} = \frac{{z + 1}}{1}.\) Gọi \(\Delta \) là đường thẳng cắt \({d_1},{d_2},{d_3}\) lần lượt tại các điểm \(A,B,C\) sao cho \(AB = BC\). Phương trình đường thẳng \(\Delta \) là
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDo \(d\) cắt \({d_1},{d_2},{d_3}\) lần lượt tại \(A,B,C\) nên \(A\left( {t;4 - t; - 1 + 2t} \right),B\left( {t';2 - 3t'; - 3t'} \right),C\left( { - 1 + 5t'';1 + 2t''; - 1 + t''} \right)\).
Lại có \(AB = BC \Rightarrow B\) là trung điểm của \(AC\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_B} = \frac{{{x_A} + {x_C}}}{2}\\{y_B} = \frac{{{y_A} + {y_C}}}{2}\\{z_B} = \frac{{{z_A} + {z_C}}}{2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}t' = \frac{{t - 1 + 5t''}}{2}\\2 - 3t' = \frac{{4 - t + 1 + 2t''}}{2}\\ - 3t' = \frac{{ - 1 + 2t - 1 + t''}}{2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}2t' = t + 5t'' - 1\\4 - 6t' = 5 - t + 2t''\\ - 6t' = - 2 + 2t + t''\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}t = 1\\t' = 0\\t'' = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {1;3;1} \right)\\B\left( {0;2;0} \right)\\C\left( { - 1;1; - 1} \right)\end{array} \right.\)
Đường thẳng \(d\) đi qua điểm \(B\left( {0;2;0} \right)\) và nhận \(\overrightarrow {BA} = \left( {1;1;1} \right)\) làm VTCP nên \(d:\frac{x}{1} = \frac{{y - 2}}{1} = \frac{z}{1}\).
Chọn B.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lê Minh Xuân