Cho số phức \(z = {\left( {\frac{{2 + 6i}}{{3 - i}}} \right)^m},\) \(m\) nguyên dương. Có bao nhiêu giá trị \(m \in \left[ {1;50} \right]\) để \(z\) là số thuần ảo?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có \(z = {\left( {\frac{{2 + 6i}}{{3 - i}}} \right)^m} = {\left( {\frac{{\left( {2 + 6i} \right)\left( {3 + i} \right)}}{{\left( {3 - i} \right)\left( {3 + i} \right)}}} \right)^m} = {\left( {2i} \right)^m} = {2^m}.{i^m}\)
+ Với \(m = 4k\left( {k \in Z} \right)\) thì \(z = {2^m}\)
+ Với \(m = 4k + 2\left( {k \in Z} \right)\) thì \(z = - {2^m}\)
+ Với \(m = 4k + 1\,\left( {k \in \mathbb{Z}} \right)\) thì \(z = {2^m}.i\)
+ Với \(m = 4k + 3\,\left( {k \in \mathbb{Z}} \right)\) thì \(z = - {2^m}.i\)
Vậy để \(z\) là số thuần ảo thì \(\left[ \begin{array}{l}m = 4k + 1\\m = 4k + 3\end{array} \right.\left( {k \in Z} \right)\) mà \(1 \le m \le 50\)
Nên \(\left[ \begin{array}{l}1 \le 4k + 1 \le 50\\1 \le 4k + 3 \le 50\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 \le 4k \le 49\\ - 2 \le 4k \le 47\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}0 \le k \le 12,25\\ - 0,5 \le k \le 11,75\end{array} \right. \Rightarrow \left[ \begin{array}{l}k \in \left\{ {0;1;2;3;...;12} \right\}\\k \in \left\{ {0;1;2;...;11} \right\}\end{array} \right.\)
Vậy có tất cả \(13 + 12 = 25\) giá trị của \(k\) thỏa mãn điều kiện hay cũng có \(25\) giá trị của \(m\) thỏa mãn điều kiện đề bà.
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lê Minh Xuân