Trong không gian với hệ tọa độ \(Oxyz\), cho đường thẳng \(\Delta :\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z + 1}}{{ - 1}}\) và hai điểm \(A\left( {1;2; - 1} \right),B\left( {3; - 1; - 5} \right)\). Gọi \(d\) là đường thẳng đi qua điểm \(A\) và cắt đường thẳng \(\Delta \) sao cho khoảng cách từ \(B\) đến đường thẳng \(d\) là lớn nhất. Khi đó, gọi \(M\left( {a;b;c} \right)\) là giao điểm của \(d\) với đường thẳng \(\Delta \). Giá trị \(P = a + b + c\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(M = d \cap \Delta \) thì \(M\left( { - 1 + 2t;3t; - 1 - t} \right)\).
Khi đó \(\overrightarrow {AM} = \left( { - 2 + 2t,3t - 2, - t} \right)\), \(\overrightarrow {BA} = \left( { - 2;3;4} \right)\), \(\overrightarrow {BM} = \left( { - 4 + 2t;3t + 1;4 - t} \right)\)
\(\left[ {\overrightarrow {BM} ,\overrightarrow {BA} } \right] = \left( {15t - 8; - 6t + 8;12t - 10} \right)\)
\( \Rightarrow d\left( {B,d} \right) = \frac{{\left| {\left[ {\overrightarrow {BM} ,\overrightarrow {BA} } \right]} \right|}}{{\left| {\overrightarrow {AM} } \right|}}\) \( = \frac{{\sqrt {{{\left( {15t - 8} \right)}^2} + {{\left( { - 6t + 8} \right)}^2} + {{\left( {12t - 10} \right)}^2}} }}{{\sqrt {{{\left( {2t - 2} \right)}^2} + {{\left( {3t - 2} \right)}^2} + {t^2}} }}\) \( = \sqrt {\frac{{{{\left( {15t - 8} \right)}^2} + {{\left( { - 6t + 8} \right)}^2} + {{\left( {12t - 10} \right)}^2}}}{{{{\left( {2t - 2} \right)}^2} + {{\left( {3t - 2} \right)}^2} + {t^2}}}} \) \( = \sqrt {\frac{{405{t^2} - 576t + 228}}{{14{t^2} - 20t + 8}}} \)
Xét \(f\left( t \right) = \frac{{405{t^2} - 576t + 228}}{{14{t^2} - 20t + 8}}\). Sử dụng MTCT (chức năng TABLE với bước START nhập \( - 5\), bước END nhập \(5\) và bước STEP nhập \(1\) ta sẽ được kết quả GTLN \(f\left( t \right) = 29\) tại \(t = 2\).
Do đó \(M\left( {3;6; - 3} \right)\) hay \(a = 3;b = 6;c = - 3 \Rightarrow a + b + c = 6\).
Chọn D.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lê Minh Xuân