Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^2}\left( {x - 1} \right){\left( {x + 2} \right)^3}\left( {2 - x} \right)\,\,\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho bằng:
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiXét phương trình \(f'\left( x \right) = 0 \Leftrightarrow {x^2}\left( {x - 1} \right){\left( {x + 2} \right)^3}\left( {2 - x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 2\\x = 2\end{array} \right.\).
Hàm số không đạt cực trị tại điểm \(x = 0\) vì đó là nghiệm bội hai của phương trình \(f'\left( x \right) = 0\). Vậy hàm số đã cho có 3 điểm cực trị.
Chọn D.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ADMICRO
YOMEDIA
ZUNIA9