Cho khối chóp \(S.ABC\) có thể tích \(V\). \(M\) là một điểm trên cạnh \(SB\). Thiết diện qua \(M\) song song với đường thẳng \(SA\) và \(BC\) chia khối chóp thành hai phần. Gọi \({V_1}\) là thể tích phần khối chóp \(S.ABC\) chứa cạnh \(SA\). Biết \(\dfrac{{{V_1}}}{V} = \dfrac{{20}}{{27}}\). Tính tỉ số \(\dfrac{{SM}}{{SB}}\).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDựng \(MN//SA\,\,\left( {N \in AB} \right),\,\,NP//BC\,\,\left( {P \in AC} \right);\,\,PQ//SA\,\,\left( {Q \in SC} \right)\).
Khi đó thiết diện cần tìm là \(MNPQ\).
Ta có \({V_1} = {V_{S.ANP}} + {V_{S.NPM}} + {V_{S.PMQ}}\)
Đặt \(\dfrac{{SM}}{{SB}} = x \Rightarrow \dfrac{{SQ}}{{SC}} = \dfrac{{AP}}{{AC}} = \dfrac{{AN}}{{AB}} = x\)
Ta có:
\( \Rightarrow {V_1} = {V_{S.ANP}} + {V_{S.NPM}} + {V_{S.PMQ}} = \left( {{x^2} + 2{x^2}\left( {1 - x} \right)} \right)V \Rightarrow \dfrac{{{V_1}}}{V} = {x^2} + 2{x^2}\left( {1 - x} \right) = 3{x^2} - 2{x^3}\)
Mà \(\dfrac{{{V_1}}}{V} = \dfrac{{20}}{{27}} \Leftrightarrow 3{x^2} - 2{x^3} = \dfrac{{20}}{{27}} \Leftrightarrow x = \dfrac{2}{3}\).
Chọn B.