Cho hàm số \(y=f(x)\) liên tục trên R thỏa mãn \(f\left( {2x} \right) = 3f\left( x \right),\,\forall x \in R\). Biết rằng \(\int_0^1 {f\left( x \right)dx = 1} \). Tính tích phân \(I = \int_1^2 {f\left( x \right)dx} \).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(I = \int_1^2 {f\left( x \right)dx = \int_0^2 {f\left( x \right)dx - \int_0^1 {f\left( x \right)dx = \int_0^2 {f\left( x \right)dx - 1 = J - 1} } } } \)
Ta có: \(\int_0^1 {f\left( x \right)dx = \frac{1}{3}\int_0^1 {3f\left( x \right)dx = } } \frac{1}{3}\int_0^1 {f\left( {2x} \right)dx = 1 \Leftrightarrow \int_0^1 {f\left( {2x} \right)dx = 3} } \)
Đặt \(t = 2x \Rightarrow dt = 2dx\). Đổi cận: \(\left\{ \begin{array}{l}
x = 0 \Rightarrow t = 0\\
x = 1 \Rightarrow t = 2
\end{array} \right.\)
\( \Rightarrow \int_0^1 {f\left( {2x} \right)dx = \int_0^2 {f\left( t \right)dt = \int_0^2 {f\left( x \right)dx = 3 \Rightarrow J = 3} } } \)
Vậy \(I = \int_1^2 {f\left( x \right)dx = 3 - 1 = 2} \).
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Vĩnh Phúc lần 3