Cho hàm số \(y=f(x)\) thỏa mãn \(f'\left( x \right) = - {x^2} - 4,\forall x \in R\). Bất phương tình \(f\left( x \right) < m\) có nghiệm thuộc khoảng (- 1;1) khi và chỉ khi
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\(f'\left( x \right) = - {x^2} - 4,\,\,\forall x \in R \Rightarrow f'\left( x \right) < 0,\,\forall x \in R \Rightarrow \) Hàm số \(y=f(x)\) nghịch biến trên R
\( \Rightarrow \mathop {\min }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = f\left( 1 \right)\)
Bất phương trình \(f(x)<m\) có nghiệm thuộc khoảng (-1;1) khi và chỉ khi \(m \ge \mathop {\min }\limits_{\left[ { - 1;1} \right]} f\left( x \right) \Leftrightarrow m \ge f\left( 1 \right)\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Nguyễn Quang Diệu
13/11/2024
4 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9