Sắp xếp 12 học sinh của lớp 12A gồm 6 học sinh nam và 6 học sinh nữ vào một dàn gồm có hai dãy ghế đối diện nhau (mỗi dãy gồm 6 chiếc ghế) để thảo luận nhóm. Tính xác suất để hai học sinh ngồi đối diện nhau và cạnh nhau luôn khác giới.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiChia 12 học sinh nam và nữ làm 2 nhóm, mỗi nhóm đều có 3 nam 3 nữ: có \({\left( {C_6^3} \right)^2} = 400\) (cách)
Hoán vị nam và nữ vào đúng vị trí, có: \({\left( {3!} \right)^4}.2 = 2592\) (cách)
Nam |
Nữ |
Nam |
Nữ |
Nam |
Nữ |
Nữ |
Nam |
Nữ |
Nam |
Nữ |
nam |
Số cách để hai học sinh ngồi đối diện nhau và cạnh nhau luôn khác giới là: 400.2592 = 1036800 (cách)
Số phần tử của không gian mẫu là: 12! = 479001600
Xác suất cần tìm là: \(\frac{{1036800}}{{479001600}} = \frac{1}{{462}}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Nguyễn Quang Diệu