Cho hàm số \(y = \frac{{2x + 1}}{{x + 1}}\) có đồ thị (C) và đường thẳng \(d: y = x + m\). Giá trị của tham số m để d cắt (C) tại hai điểm phân biệt A, B sao cho \(AB = \sqrt {10} \) là:
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương trình hoành độ giao điểm của (C) và đường thẳng d:
\(\frac{{2x + 1}}{{x + 1}} = x + m \Leftrightarrow \left\{ \begin{array}{l}
x \ne - 1\\
{x^2} + \left( {m - 1} \right)x + m - 1 = 0\left( 1 \right)
\end{array} \right.\)
Khi đó d cắt (C) tại 2 điểm phân biệt A, B khi và chỉ khi phương trình (1) có 2 nghiệm phân biệt khác \( - 1 \Leftrightarrow \left\{ \begin{array}{l}
{\left( {m - 1} \right)^2} - 4\left( {m - 1} \right) > 0\\
{\left( { - 1} \right)^2} - \left( {m - 1} \right) + m - 1 \ne 0
\end{array} \right. \Leftrightarrow m < 1 \vee m > 5\)
Ta có \(A\left( {{x_1};{x_1} + m} \right),B\left( {{x_2};{x_2} + m} \right) \Rightarrow \overrightarrow {AB} = \left( {{x_2} - {x_1};{x_2} - {x_1}} \right) \Rightarrow AB = \sqrt {2{{\left( {{x_2} - {x_1}} \right)}^2}} = \sqrt 2 \left| {{x_2} - {x_1}} \right|,\left\{ \begin{array}{l}
{x_1} + {x_2} = 1 - m\\
{x_1}{x_2} = m - 1
\end{array} \right.\)Từ đây ta có
\(\begin{array}{l}
AB = \sqrt {10} \Leftrightarrow \left| {{x_2} - {x_1}} \right| = \sqrt 5 \Leftrightarrow {\left( {{x_2} + {x_1}} \right)^2} - 4{x_1}{x_2} = 5\\
\Leftrightarrow {\left( {1 - m} \right)^2} - 4\left( {m - 1} \right) = 5 \Leftrightarrow {m^2} - 6m = 0 \Leftrightarrow \left[ \begin{array}{l}
m = 0\\
m = 6
\end{array} \right.\left( n \right)
\end{array}\)
Vậy chọn m=0 hoặc m=6
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Nguyễn Trãi lần 1