Cho hàm số \(y=\frac{2x-1}{x-2}\) có đồ thị \(\left( C \right)\). Gọi I là giao điểm của hai đường tiệm cận. Tiếp tuyến \(\Delta \) của \(\left( C \right)\) tại M cắt các đường tiệm cận tại A và B sao cho đường tròn ngoại tiếp tam giác IAB có diện tích nhỏ nhất. Khi đó tiếp tuyến \(\Delta \) của \(\left( C \right)\) tạo với hai trục tọa độ một tam giác có diện tích lớn nhất thuộc khoảng nào?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(M\left( {{x}_{0}};\frac{2{{x}_{0}}-1}{{{x}_{0}}-2} \right)\in \left( C \right)\,,\,\left( {{x}_{0}}\ne 2 \right)\). Phương trình tiếp tuyến tại M có dạng
\(\Delta :y=-\frac{3}{{{({{x}_{0}}-2)}^{2}}}(x-{{x}_{0}})+\frac{2{{x}_{0}}-1}{{{x}_{0}}-2}\).
Giao điểm của \(\Delta \) với tiệm cận đứng là \(A\left( 2;\,\,\frac{2{{x}_{0}}+2}{{{x}_{0}}-2} \right)\).
Giao điểm của \(\Delta \) với tiệm cận ngang là \(B\left( 2{{x}_{0}}-2;\,\,2 \right)\).
Xét \(\left\{ \begin{align} & {{x}_{A}}+{{x}_{B}}=2+2{{x}_{0}}-2=2{{x}_{0}} \\ & {{y}_{A}}+{{y}_{B}}=\frac{2{{x}_{0}}+2}{{{x}_{0}}-2}+2=2.\frac{2{{x}_{0}}-1}{{{x}_{0}}-2}=2{{y}_{0}} \\ \end{align} \right.\)⇒ M là trung điểm của AB.
\(\Delta \,IAB\) vuông tại I nên M là tâm đường tròn ngoại tiếp tam giác IAB.
\(\Rightarrow S=\pi {{R}^{2}}=\pi I{{M}^{2}}=\pi \left[ {{({{x}_{0}}-2)}^{2}}+{{\left( \frac{2{{x}_{0}}-1}{{{x}_{0}}-2}-2 \right)}^{2}} \right]=\pi \left[ {{({{x}_{0}}-2)}^{2}}+\frac{9}{{{({{x}_{0}}-2)}^{2}}} \right]\ge 6\pi \)
Dấu ''='' xảy ra khi \({{({{x}_{0}}-2)}^{2}}=\frac{9}{{{({{x}_{0}}-2)}^{2}}}\Leftrightarrow \left[ \begin{align} & {{x}_{0}}=\,\,\,\,\sqrt{3}+2\Rightarrow {{y}_{0}}=\,\,\,\,\,\sqrt{3}+2 \\ & {{x}_{0}}=-\sqrt{3}+2\Rightarrow {{y}_{0}}=-\sqrt{3}+2 \\ \end{align} \right.\).
Với \({{x}_{0}}=\,\,\,\,\sqrt{3}+2\Rightarrow \Delta :y=-x+2\sqrt{3}+4\) cắt 2 trục tọa độ tại \(E\left( 0;\,\,2\sqrt{3}+4 \right)\) và \(F\left( \,2\sqrt{3}+4;\,\,0 \right)\), suy ra \({{S}_{OEF}}=\frac{1}{2}\,OE.OF=14+8\sqrt{3}\approx 27,8564\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Dương Văn Thì