Cho hình chóp S.ABC có đáy là tam giác cân tại A, \(AB = AC = a,\,\,BAC = {120^0}\). Tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích V của khối chóp S.ABC.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi H là trung điểm của AB.
\(\Delta SAB\) đều và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right) \Rightarrow SH \bot \left( {ABC} \right)\).
\(\Delta SAB\) đều cạnh \(a \Rightarrow SH = \frac{{a\sqrt 3 }}{2}.\)
\(\begin{array}{l}
{S_{ABC}} = \frac{1}{2}AB.AC.\sin \angle A = \frac{1}{2}{a^2}.\frac{{\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{4}.\\
\Rightarrow {V_{SABC}} = \frac{1}{3}{S_{ABC}}.SH = \frac{1}{3}.\frac{{a\sqrt 3 }}{2}.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{{a^3}}}{8}.
\end{array}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Vĩnh Phúc lần 3