Cho hình chóp \(S.ABC\) có đáy là tam giác vuông cân ở \(B,\,AC = a\sqrt 2 ,SA \bot mp\left( {ABC} \right),\,SA = a.\) Gọi \(G\) là trọng tâm tam giác \(SBC,\) mặt phẳng \(\left( \alpha \right)\) đi qua \(AG\) và song song với \(BC\) cắt \(SB,SC\) lần lượt tại \(M,{\rm N}\). Tính thể tích \(V\) của khối chóp \(S.AM{\rm N}\)?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiQua G, kẻ đường thẳng song song với BC, cắt SB tại M và cắt SC tại N.
Gọi H là trung điểm của BC.
\( \Rightarrow \frac{{SG}}{{SH}} = \frac{2}{3}\) (tính chất đường trung tuyến).
Ta có: \(MN//BC \Rightarrow \frac{{SM}}{{SB}} = \frac{{SN}}{{SC}} = \frac{{SG}}{{SH}} = \frac{2}{3}\) (định lý Ta-let)
Ta có : \(AB = \frac{{AC}}{{\sqrt 2 }} = a\;(\Delta ABC\) cân tại \(B)\)
Có: \({V_{S.ABC}} = \frac{1}{3}SA.{S_{ABC}} = \frac{1}{3}SA.\frac{1}{2}A{B^2} = \frac{1}{3}.a.\frac{1}{2}.{a^2} = \frac{1}{6}{a^3}.\)
Theo công thức tỉ lệ thể tích ta có: \(\frac{{{V_{SAMN}}}}{{{V_{SABC}}}} = \frac{{SA}}{{SA}}.\frac{{SM}}{{SB}}.\frac{{SN}}{{SC}} = \frac{2}{3}.\frac{2}{3} = \frac{4}{9} \Rightarrow {V_{SAMN}} = \frac{4}{9}{V_{SABC}} = \frac{4}{9}.\frac{1}{6}{a^3} = \frac{2}{{27}}{a^3}.\)
Chọn B.