Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 3a,AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60o. Gọi M điểm trên AB sao cho AM = 2a, tính khoảng cách giữa MD và SC.
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai+) Theo giả thiết ta có \(\left\{ \begin{array}{l} \left( {SBI} \right) \bot (ABCD)\\ \left( {SCI} \right) \bot (ABCD)\\ SI = \left( {SBI} \right) \cap \left( {SCI} \right) \end{array} \right. \Rightarrow SI \bot (ABCD)\)
+) Vẽ \(IK \bot BC \Rightarrow BC \bot \left( {SIK} \right) \Rightarrow \widehat {SKI}\) là góc giữa mặt phẳng (SBC) với mặt đáy nên \(\widehat {SKI} = 60^\circ \).
+) Vì \({S_{\Delta IDC}} = \frac{1}{2}DI.DC = \frac{{{a^2}}}{4},{S_{\Delta IAB}} = \frac{{3{a^2}}}{4}\). Suy ra \({S_{\Delta BIC}} = {S_{ABCD}} - \left( {{S_{\Delta ICD}} + {S_{\Delta IAB}}} \right) = {a^2}\).
+) Mặt khác \(BC = \sqrt {{{\left( {AB - CD} \right)}^2} + A{D^2}} = a\sqrt 5 \) và \({S_{\Delta IBC}} = \frac{1}{2}IK.BC.\) Suy ra \(IK = \frac{{2a\sqrt 5 }}{5}\)
+) Trong tam giác vuông SIK ta có \(SI = IK.\tan 60^\circ = \frac{{2{\rm{a}}\sqrt {15} }}{5}\).
+) Vì AM = 2a nên \(BM = a \Rightarrow MD\,{\rm{//}}\,BC\), do đó \(d\left( {MD\,,\,\,SC} \right) = d\left( {MD\,,\,\left( {SBC} \right)} \right) = d\left( {D\,,\,\left( {SBC} \right)} \right)\).
+) Gọi E là giao điểm của AD với BC, ta có \(\frac{{ED}}{{EA}} = \frac{{DC}}{{AB}} = \frac{1}{3} \Rightarrow ED = \frac{1}{2}AD = ID\).
Do đó \(d\left( {D\,,\,\left( {SBC} \right)} \right) = \frac{1}{2}d\left( {I\,,\,\left( {SBC} \right)} \right)\).
+) Gọi H là hình chiếu của I lên SK ta có \(d\left( {I\,,\,\,\left( {SBC} \right)} \right) = IH\).
Trong tam giác vuông SIK, ta có: \(\frac{1}{{I{H^2}}} = \frac{1}{{S{I^2}}} + \frac{1}{{I{K^2}}} = \frac{5}{{12{a^2}}} + \frac{5}{{4{a^2}}} = \frac{5}{{3{a^2}}} \Rightarrow IH = \frac{{a\sqrt {15} }}{5}.\)
Vậy \(d\left( {MD,SC} \right) = \frac{{a\sqrt {15} }}{{10}}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Thị Minh Khai