Cho hình chóp S.ABCD có đáy hình chữ nhật, SA vuông góc với mặt phẳng (ABCD). Tâm mặt cầu ngoại tiếp hình tròn S.ABCD là điểm I với
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi I là trung điểm của đoạn thẳng SC.
O là tâm của hình chữ nhật ABCD.
Ta chứng minh I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD:
Do OI là đường trung bình của tam giác \(SAC \Rightarrow OI//SA\)
Mà \(SA \bot \left( {ABCD} \right) = > OI \bot \left( {ABCD} \right) = > IA = IB = IC = ID\)
(do O là tâm của hình chữ nhật ABCD) (1)
\(\Delta SAC\) vuông tại A, I là trung điểm của \(SC \Rightarrow IA = IS = IC\,\left( 2 \right)\)
Từ (1), (2): \( \Rightarrow IA = IB = IC = ID = IS \Rightarrow I\) là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Ngô Quyền - Hải Phòng lần 1