Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD, BC; \(AD = 3BC = 3a;AB = a,SA = a\sqrt 3 .\) Điểm I thỏa mãn \(\overrightarrow {AD} = 3\overrightarrow {AI} ;\) M là trung điểm SD, H là giao điểm của AM và SI . Gọi E , F lần lượt là hình chiếu của A lên SB, SC. Tính thể tích V của khối nón có đáy là đường tròn ngoại tiếp tam giác EFH và đỉnh thuộc mặt phẳng (ABCD).
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét tam giác SAD vuông tại A có \(SA = a\sqrt 3 ,AD = 3a \Rightarrow SDA = {30^0} \Rightarrow MAI = {30^0}.\)
Lại có tam giác SAI vuông tại A có \(SA = a\sqrt 3 ,AI = a \Rightarrow SIA = {60^0}\) nên tam giác AHI có \(H=90^0\) hay \(AH \bot SI.\)
Mà \(AH \bot IC\) do \(IC//BA \bot (SAD)\) nên \(AH \bot (SIC) \Rightarrow AH \bot SC.\)
Ngoài ra, \(AE \bot SB,AE \bot BC\left( {BC \bot (SAB)} \right) \Rightarrow AE \bot (SBC) \Rightarrow AE \bot SC.\)
Mà \(AE \bot SC\) nên \(SC \bot (AEFH)\) và AEFH là tứ giác có \(E = H = {90^0}\) nên nội tiếp đường tròn tâm K là trung điểm AF đường kính AF .
Gọi O là trung điểm AC thì OK // SC mà \(SC \bot (AEFH)\) nên \(OK \bot (AEFH)\) hay O chính là đỉnh hình nón và đường tròn đáy là đường tròn đường kính AF .
Ta tính AF, OK.
Xét tam giác SAC vuông tại A đường cao AF nên \(AF = \frac{{SA.AC}}{{SC}} = \frac{{SA.AC}}{{\sqrt {S{A^2} + A{C^2}} }} = \frac{{a\sqrt 6 }}{{\sqrt 5 }}; OK = \frac{1}{2}CF = \frac{1}{2}.\frac{{C{A^2}}}{{CS}} = \frac{a}{{\sqrt 5 }}.\)
Vậy thể tích \(V = \frac{1}{2}\pi {r^2}h = \frac{1}{3}\pi .\frac{a}{{\sqrt 5 }}.{\left( {\frac{1}{2}.\frac{{a\sqrt 6 }}{{\sqrt 5 }}} \right)^2} = \frac{{\pi {a^3}}}{{10\sqrt 5 }}.\)
Đề thi thử THPT QG môn Toán năm 2019
Sở GD & ĐT Bắc Ninh lần 2