Cho hình chóp S.ABCD đáy là hình chữ nhật có \(AB=2a\sqrt{3},AD=2a.\) Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp S.ABD là:
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiGọi H là trung điểm của \(AB\Rightarrow SH\bot \left( ABC \right).\)
Ta có: \(\Delta SAB\) đều \(\Rightarrow AB=SA=SB=2a.\)
Áp dụng định lý Pitago cho \(\Delta SAH\)vuông tại \)H\) ta có:
\(SH=\sqrt{S{{A}^{2}}-A{{H}^{2}}}=\sqrt{{{\left( 2a\sqrt{3} \right)}^{2}}-{{\left( \frac{2a\sqrt{3}}{2} \right)}^{2}}}=3a\)
\(\Rightarrow {{V}_{S.ABD}}=\frac{1}{3}.SH.{{S}_{ABD}}=\frac{1}{6}.SH.{{S}_{ABCD}}\)
\(=\frac{1}{6}.SH.AB.AD=\frac{1}{6}.3a.2a.2a\sqrt{3}=2\sqrt{3}{{a}^{3}}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Chuyên Long An lần 3
26/11/2024
226 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9