Cho hình lăng trụ ABC.A'B'C' có thể tích bằng a3. Gọi M, N, P lần lượt là tâm của các mặt bên và G là trọng tâm tam giác ABC. Thể tích của khối tứ diện GMNP bằng
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiTa có
\(\left\{ \begin{array}{l}
MN\parallel A'C,MN = \frac{1}{2}A'C\\
NP\parallel A'B',NP = \frac{1}{2}A'B'\\
PM\parallel B'C',PM = \frac{1}{2}B'C'
\end{array} \right. \Rightarrow \left\{ \begin{array}{l}
{S_{MNP}} = \frac{1}{4}{S_{A'B'C'}}\\
(MNP)\parallel (A'B'C')
\end{array} \right.\)
Lăng trụ có đường cao:
\(h \Rightarrow d(G,(MNP)) = \frac{h}{2} \Rightarrow {V_{GMNP}} = \frac{1}{3}.\frac{h}{2}.\frac{1}{4}{S_{A'B'C'}}\)
Bài ra ta có \(h.{S_{A'B'C'}} = {a^3} \Rightarrow {V_{GMNP}} = \frac{{{a^3}}}{{24}}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG môn Toán năm 2020
Trường THPT Lương Thế Vinh lần 2
13/11/2024
4 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9