Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(A\) và \(AB = AC = a.\) Biết góc giữa hai đường thẳng \(AC'\) và \(BA'\) bằng \({60^0}\) . Thể tích của khối lăng trụ \(ABC.A'B'C'\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(D\) là đỉnh thứ tư của hình bình hành \(A'B'DC'\).
Do \(\left\{ \begin{array}{l}A'B' = A'C'\\\angle B'A'C' = {90^0}\end{array} \right. \Rightarrow A'B'DC'\) là hình vuông.
\( \Rightarrow AC'//BD \Rightarrow \angle \left( {AC';BA'} \right) = d\left( {BD;BA'} \right) = {60^0}\) và \(B'D = a\).
Gọi \(O = A'D \cap B'C' \Rightarrow O\) là trung điểm của \(A'D\).
\(\Delta A'B'C'\) vuông cân tại \(A' \Rightarrow A'O = \frac{{a\sqrt 2 }}{2} \Rightarrow A'D = a\sqrt 2 \).
Đặt \(BB' = x \Rightarrow A'B = \sqrt {{x^2} + {a^2}} ;\,\,BD = \sqrt {{x^2} + {a^2}} \).
TH1: \(\angle A'BD = {60^0}\).
Áp dụng định lí cosin trong tam giác \(A'BD\) ta có:
\(\begin{array}{l}A'{D^2} = A'{B^2} + B{D^2} - 2A'B.BD.\cos {60^0}\\ \Rightarrow 2{a^2} = 2{x^2} + 2{a^2} - 2\left( {{x^2} + {a^2}} \right)\frac{1}{2}\\ \Leftrightarrow 2{x^2} = {x^2} + {a^2} \Leftrightarrow {x^2} = {a^2} \Leftrightarrow x = a\end{array}\)
\( \Rightarrow {V_{ABC.A'B'C'}} = BB'.{S_{\Delta ABC}} = a.\frac{1}{2}{a^2} = \frac{{{a^3}}}{2}\)
TH1: \(\angle A'BD = {120^0}\).
Áp dụng định lí cosin trong tam giác \(A'BD\) ta có:
\(\begin{array}{l}A'{D^2} = A'{B^2} + B{D^2} - 2A'B.BD.\cos {120^0}\\ \Rightarrow 2{a^2} = 2{x^2} + 2{a^2} + 2\left( {{x^2} + {a^2}} \right)\frac{1}{2}\\ \Leftrightarrow 0 = 3{x^2} + 2{a^2} \Leftrightarrow x = a = 0\,\,\left( {vo\,\,li} \right)\end{array}\)
Vậy \({V_{ABC.A'B'C'}} = \frac{{{a^3}}}{2}\).
Chọn D.