Cho hình lập phương ABCD.A'B'C'D' cạnh a. Gọi M, N lần lượt nằm trên các cạnh A'B', BC sao cho MA' = MB' và NB = 2NC. Mặt phẳng (DMN) chia khối lập phương đã cho thành hai khối đa diện. Gọi V(H) là thể tích khối đa diện chứa đỉnh A, V(H') là thể tích khối đa diện còn lại. Tỉ số \(\frac{{{V_{\left( H \right)}}}}{{{V_{\left( {H'} \right)}}}}\) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTrong (A'B'C'D') kẻ MF // DN suy ra \(\Delta A'MF\Delta CDN\,\,\left( {g.g} \right)\) do đó \(\frac{{A'F}}{{CN}} = \frac{{A'M}}{{CD}} = \frac{1}{2} \Rightarrow A'F = \frac{a}{6} \Rightarrow D'F = \frac{{5a}}{6}\).
Trong (BCC'B') kẻ NE // DF suy ra \(\Delta BNE\Delta D'FD\,\,\left( {g.g} \right)\) do đó \(\frac{{BE}}{{D'D}} = \frac{{BN}}{{D'F}} = \frac{4}{5} \Rightarrow BE = \frac{{4a}}{5} \Rightarrow B'E = \frac{a}{5}\).
Mặt phẳng (DMN) cắt hình lập phương ABCD.A'B'C'D' theo thiết diện là ngũ giác DNEMF với \(EB' = \frac{a}{5}\) và \(A'F = \frac{a}{6}\).
Ta có: \({V_{\left( {{H'}} \right)}} = {V_{E.B'C'D'FM}} + {V_{E.D'FD}} + {V_{E.DCC'D'}} + {V_{E.NCD}}\)
\(= \frac{1}{3}\left( {{a^2} - \frac{1}{2}.\frac{a}{2}.\frac{a}{6}} \right)\frac{a}{5} + \frac{1}{3}.\frac{1}{2}a.\frac{{5a}}{6}.a + \frac{1}{3}{a^3} + \frac{1}{3}.\frac{1}{2}a.\frac{a}{3}.\frac{{4a}}{5} = \frac{{209}}{{360}}{a^3}.\)
Khi đó: \({V_{\left( H \right)}} = {a^3} - {V_{\left( {H'} \right)}} = \frac{{151}}{{360}}{a^3}\).
Vậy \(\frac{{{V_{\left( H \right)}}}}{{{V_{\left( {H'} \right)}}}} = \frac{{151}}{{209}}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Trần Hưng Đạo