Cho hình lập phương \(ABCD.\ A'B'C'D'\) với \(O'\) là tâm hình vuông \(A'B'C'D'\). Biết rằng tứ diện \(O'BC\text{D}\)có thể tích bằng \(6{{a}^{3}}\). Tính thể tích V của khối lập phương \(ABCD.\ A'B'C'D'\).
Chính xác
Xem lời giải
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
ATNETWORK
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiGọi x là độ dài của cạnh hình lập phương.
Ta có: \({{V}_{O'BCD}}=\frac{1}{3}.{{S}_{BCD}}.d\left( O',\left( BCD \right) \right)=\frac{1}{3}.\frac{{{x}^{2}}}{2}.x=\frac{{{x}^{3}}}{6}\).
Theo giả thiết, \({{V}_{O'BCD}}=6{{a}^{3}}\Leftrightarrow \frac{{{x}^{3}}}{6}=6{{a}^{3}}\Leftrightarrow {{x}^{3}}=36{{a}^{3}}\).
Vậy thể tích lập phương là: \({{V}_{ABCD.A'B'C'D'}}={{x}^{3}}=36{{a}^{3}}\).
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thành Nhân lần 2
26/11/2024
129 lượt thi
0/50
Bắt đầu thi
ADMICRO
YOMEDIA
ZUNIA9