Cho hình trụ \(\left( T \right)\) có \(\left( C \right)\) và \(\left( {{C}'} \right)\) là hai đường tròn đáy nội tiếp hai mặt đối diện của một hình lập phương. Biết rằng, trong tam giác cong tạo bởi đường tròn \(\left( C \right)\) và hình vuông ngoại tiếp của \(\left( C \right)\) có một hình chữ nhật kích thước \(a\,\,\times \,\,2a\) (như hình vẽ dưới đây). Tính thể tích \(V\) của khối trụ \(\left( T \right)\) theo \(a.\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGắn vào hệ trục tọa độ Oxy như hình vẽ ta có:
Giả sử đường tròn đáy hình trụ là đường tròn tâm \(I\left( b;b \right)\,\,\left( b>2a \right)\) bán kính \(R=b\) tiếp xúc với 2 trục tọa độ và nội tiếp một mặt của hình lập phương. Khi đó \(\left( I \right):\,\,{{\left( x-b \right)}^{2}}+{{\left( y-b \right)}^{2}}={{b}^{2}}\)
Điểm \(M\left( 2a;a \right)\in \left( I \right)\Rightarrow {{\left( 2a-b \right)}^{2}}+{{\left( a-b \right)}^{2}}={{b}^{2}}\)
\(\Leftrightarrow 5{{a}^{2}}-6ab+{{b}^{2}}=0\Leftrightarrow \left[ \begin{align} & b=a\,\,\,\left( ktm \right) \\ & b=5a\,\,\left( tm \right) \\ \end{align} \right.\)
\(\Rightarrow \) Bán kính đáy hình trụ \(R=5a\), cạnh của hình lập phương bằng \(2b=10a\Rightarrow \) chiều cao khối trụ \(h=10a\)
Vậy thể tích khối trụ là: \(V=\pi {{R}^{2}}h=\pi .{{\left( 5a \right)}^{2}}.10a=250\pi {{a}^{3}}\)
Chọn B