Cho khối lăng trụ \(ABC.{A}'{B}'{C}'\) có \(AB=3a,\)\(AC=4a,\) \(BC=5a,\) khoảng cách giữa 2 đường thẳng \(AB\) và \({B}'{C}'\) bằng \(2a.\) Gọi \(M,\) \(N\) lần lượt là trung điểm của \({A}'{B}'\) và \({A}'{C}',\) (tham khảo hình vẽ dưới đây). Thể tích \(V\) của khối chóp \(A.BCNM\) là?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi V là thể tích khối lăng trụ.
Vì BMCN là hình thang có hai đáy BC, MN và \(BC=2MN\) nên ta có
\({{S}_{\Delta BMN}}=\frac{1}{2}d\left( B;MN \right).MN=\frac{1}{2}d\left( N;BC \right).\frac{1}{2}BC=\frac{1}{2}{{S}_{\Delta BCN}}\)
Suy ra \({{V}_{A.BCNM}}={{V}_{A.BMN}}+{{V}_{A.BCN}}=\frac{3}{2}{{V}_{A.BCN}}=\frac{3}{2}{{V}_{N.ABC}}=\frac{3}{2}.\frac{1}{3}V=\frac{1}{2}V\).
Ta có đáy là tam giác \(ABC\) vuông tại A nên: \({{S}_{\Delta ABC}}=6{{a}^{2}}\).
Vì \({B}'{C}'//\left( ABC \right)\Rightarrow d\left( AB;{B}'{C}' \right)=d\left( {B}'{C}'\left( ABC \right) \right)=d\left( {B}';\left( ABC \right) \right)=2a=h\)
Với h là chiều cao của khối lăng trụ.
Suy ra \(V=h.{{S}_{\Delta ABC}}=2a.6{{a}^{2}}=12{{a}^{3}}\Rightarrow {{V}_{A.BCNM}}=\frac{1}{2}V=6{{a}^{3}}\).
Chọn C
Đề thi thử Tốt nghiệp THPT môn Toán năm 2023-2024
Trường THPT Sương Nguyệt Anh