Cho mặt cầu tâm \(O\) và tam giác \(ABC\) có ba đỉnh nằm trên mặt cầu với góc \(\angle BAC = {30^0}\) và \(BC = a\) . Gọi \(S\) là điểm nằm trên mặt cầu, không thuộc mặt phẳng \(\left( {ABC} \right)\) và thỏa mãn \(SA = SB = SC,\) góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}\) . Tính thể tích \(V\) của khối cầu tâm \(O\) theo \(a.\)
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTheo đề bài ta có: \(SA = SB = SC \Rightarrow \) hình chiếu vuông góc của đỉnh \(S\) trên \(\left( {ABC} \right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC.\)
Gọi \(I\) là tâm mặt cầu ngoại tiếp \(\Delta ABC \Rightarrow SI \bot \left( {ABC} \right).\)
\( \Rightarrow O \in SI\;\;hay\;\;S,\;I,\;O\) thẳng hàng.
Ta có: \(\angle \left( {SA;\;\left( {ABC} \right)} \right) = \angle \left( {SA,\;AI} \right) = \angle SAI = {60^0}.\)
Xét \(\Delta SAI\) ta có: \(SI = SA.\sin {60^0} = \frac{{SA\sqrt 3 }}{2}.\)
Kẻ \(OM \bot SA \Rightarrow \Delta SMO \sim \Delta SAI\;\;\left( {g - g} \right)\)
\(\begin{array}{l} \Rightarrow \frac{{SO}}{{SA}} = \frac{{SM}}{{SI}} \Rightarrow SO = \frac{{SM.SA}}{{SI}} = \frac{{S{A^2}}}{{2SI}} = \frac{{S{A^2}}}{{2.\frac{{SA\sqrt 3 }}{2}}} = \frac{{SA\sqrt 3 }}{3} = R.\\ \Rightarrow OI = SI - OI = \frac{{SA\sqrt 3 }}{2} - \frac{{SA\sqrt 3 }}{3} = \frac{{SA\sqrt 3 }}{6}.\\ \Rightarrow IA = \sqrt {{R^2} - O{I^2}} = \sqrt {{{\left( {\frac{{SA\sqrt 3 }}{3}} \right)}^2} - {{\left( {\frac{{SA\sqrt 3 }}{6}} \right)}^2}} = \frac{{SA}}{2} = {R_{ABC}}\end{array}\)
Với \({R_{ABC}}\) là bán kính đường tròn ngoại tiếp \(\Delta ABC.\)
Áp dụng định lý hàm số sin trong \(\Delta ABC\) ta có: \(\begin{array}{l}\frac{{BC}}{{\sin A}} = \frac{a}{{\sin {{30}^0}}} = 2{R_{ABC}} = 2a \Leftrightarrow {R_{ABC}} = a.\\ \Rightarrow IA = a \Rightarrow SA = 2{R_{ABC}} = 2a.\\ \Rightarrow R = \frac{{SA\sqrt 3 }}{3} = \frac{{2a\sqrt 3 }}{3}.\\ \Rightarrow {V_{cau}} = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {\left( {\frac{{2a\sqrt 3 }}{3}} \right)^3} = \frac{{32\sqrt 3 \pi {a^3}}}{{27}}.\end{array}\)
Chọn B.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Lê Quảng Chí