Cho tứ diện ABCD có các tam giác ABC và BCD vuông cân và nằm trong hai mặt phẳng vuông góc với nhau, AB = AC = DB = DC = 2a. Khoảng cách từ B đến mặt phẳng (ACD) bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi H, E lần lượt là trung điểm của BC, AC thì \(DH\bot \left( ABC \right).\)
Ta có \(BA\bot AC,HE//BA\Rightarrow HE\bot CA.\)
Lại có \(AC\bot DH\) nên \(AC\bot \left( DHE \right)\Rightarrow \left( DHE \right)\bot \left( DAC \right).\)
Kẻ \(HK\bot DE\left( K\in DE \right)\Rightarrow HK\bot \left( DAC \right).\)
Tam giác DHE vuông tại H có
\(DH=\frac{1}{2}BC=\frac{1}{2}\sqrt{4{{a}^{2}}+4{{a}^{2}}}=a\sqrt{2},HE=\frac{1}{2}AB=a.\)
Áp dụng công thức \(\frac{1}{H{{K}^{2}}}=\frac{1}{D{{H}^{2}}}+\frac{1}{H{{E}^{2}}}\) ta tính được \(HK=\frac{a\sqrt{6}}{3}.\)
Vì H là trung điểm BC nên \(d\left( B,\left( DAC \right) \right)=2d\left( H,\left( DAC \right) \right)=2HK=\frac{2a\sqrt{6}}{3}.\)
Vậy khoảng cách \(d\left( C,\left( SAB \right) \right)=\frac{3V}{{{S}_{SAB}}}=\frac{3.\frac{{{a}^{3}}\sqrt{3}}{2}}{\frac{{{a}^{2}}\sqrt{3}\sqrt{13}}{4}}=\frac{6a}{\sqrt{13}}=\frac{6\sqrt{13}a}{13}.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Văn Trỗi lần 2