Có bao nhiêu cặp số nguyên \(\left( x;y \right)\) thỏa mãn \(0\le x\le 3000\) và \(3\left( {{9}^{y}}+2y \right)=x+{{\log }_{3}}{{\left( x+1 \right)}^{3}}-2\)?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \({{\log }_{3}}\left( x+1 \right)=t\Rightarrow x={{3}^{t}}-1\).
Phương trình trở thành:
\(3\left( {{3}^{2y}}+2y \right)={{3}^{t}}-1+3t-2\Leftrightarrow {{3}^{2y}}+2y={{3}^{t-1}}+\left( t-1 \right)\)
Xét hàm số \(f\left( u \right)={{3}^{u}}+u\Rightarrow {f}'\left( u \right)={{3}^{u}}.\ln 3+1>0\) nên hàm số luôn đồng biến.
Vậy để \(f\left( 2y \right)=f\left( t-1 \right)\Leftrightarrow 2y=t-1\Leftrightarrow 2y+1=t={{\log }_{3}}\left( x+1 \right)\)
\(\Rightarrow 0\le 2y+1\le {{\log }_{3}}3001\Rightarrow 0\le 2y+1\le 6\Rightarrow y=\left\{ 0;1;2 \right\}\)
Với mỗi nghiệm y ta tìm được một nghiệm x tương ứng.
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Võ Thị Sáu lần 2