Có bao nhiêu giá trị nguyên của tham số \(m\) để bất phương trình \(\log 5+\log \left( {{x}^{2}}+1 \right)\ge \log \left( m{{x}^{2}}+4x+m \right)\) đúng với mọi \(x\)?
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐể bất phương trình đúng với mọi \(x\) khi và chỉ khi:
● Bất phương trình xác định với mọi \(x\Leftrightarrow m{{x}^{2}}+4x+m>0,\text{ }\forall x\in \mathbb{R}\)
\( \Leftrightarrow \left\{ \begin{array}{l} m > 0\\ \Delta ' < 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m > 0\\ 4 - {m^2} < 0 \end{array} \right. \Leftrightarrow m > 2.\) (1)
● Bất phương trình nghiệm đúng với mọi \(x\Leftrightarrow \log \left( 5{{x}^{2}}+5 \right)\ge \log \left( m{{x}^{2}}+4x+m \right),\text{ }\forall x\in \mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow 5{x^2} + 5 \ge m{x^2} + 4x + m,{\rm{ }}\forall x \in R\\ \Leftrightarrow \left( {5 - m} \right){x^2} - 4x + 5 - m \ge 0,{\rm{ }}\forall x \in R \end{array}\)
\( \Leftrightarrow \left\{ \begin{array}{l} 5 - m > 0\\ \Delta ' \le 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m < 5\\ - {m^2} + 10m - 21 \le 0 \end{array} \right. \Leftrightarrow m \le 3.\) (2)
Từ (1) và (2), ta được \(2<m\le 3\xrightarrow{m\in \mathbb{Z}}m=3.\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Thăng Long lần 3