Giả sử a, b là các số thực sao cho \({x^3} + {y^3} = a{.10^{3z}} + b{.10^{2z}}\) đúng với mọi các số thực dương x, y, z thoả mãn \(\log \left( {x + y} \right) = z\) và \(\log \left( {{x^2} + {y^2}} \right) = z + 1\). Giá trị của a + b bằng
Suy nghĩ trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(t = {10^z}\). Khi đó \({x^3} + {y^3} = a.{t^3} + b.{t^2}\).
Ta có \(\left\{ \begin{array}{l} \log \left( {x + y} \right) = z\\ \log \left( {{x^2} + {y^2}} \right) = z + 1 \end{array} \right.\).
\( \Leftrightarrow \left\{ \begin{array}{l} x + y = {10^z} = t\\ {x^2} + {y^2} = {10.10^z} = 10t \end{array} \right.\)
\(\Rightarrow xy = \frac{{{t^2} - 10.t}}{2}\)
Khi đó \({x^3} + {y^3} = {\left( {x + y} \right)^3} - 3xy\left( {x + y} \right) = {t^3} - \frac{{3t\left( {{t^2} - 10t} \right)}}{2} = - \frac{1}{2}{t^3} + 15{t^2}\).
Suy ra \(a = - \frac{1}{2},b = 15\)
Vậy \(a + b = \frac{{29}}{2}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Gia Viễn B